
1

Trees Overview
• Tree: recursive data structure

(similar to list)
– each cell may have two or more

successors (children)
– each cell has at most one

predecessor (parent)
• distinguished cell called root has

no parent
– all cells are reachable from root

• Binary tree: tree in which each
cell can have at most two
children

5

4

7 8 9

2

5

4

7 8

2

5

4

7 8

5

6

8

General tree Binary tree

Not a tree List-like tree

Terminology
• Edge A B: A is said to be

parent of B, and B is said to be
its child

• Generalization of parent and
child: ancestor and descendant
– root and A are ancestors of B

• Leaf node: node with no
descendants

• Depth of node: length of path
from root to that node
– depth(A) = 1 depth(B) = 2

• Height of node: length of
longest path from node to leaf
– height(A) = 1 height(B) = 0

• Height of tree = height of root
– in example, height of tree = 2

5

4

7 8

2

Binary tree

A

B

Left sub-tree of root Right sub-tree of root

Root of tree

Class for binary tree cells
class TreeCell {

protected Object datum;
protected TreeCell left;
protected TreeCell right;

public TreeCell(Object o) {
datum = o;

}
public TreeCell(Object o, TreeCell l, TreeCell r) {

datum = o;
left = l;
right = r;

}
methods called getDatum, setDatum,
getLeft, setLeft, getRight, setRight
with obvious code

}

2

Class for general trees
5

4

7 8 9

2

7 8 3 1

5

4

7 8 9

2

7 8 3 1

class GTreeCell{
protected Object datum;
protected GTreeCell left;
protected GTreeCell sibling;
….appropriate getter and setter methods

} General tree

Tree represented using GTreeCell

• Parent node points directly only to its leftmost child.
• Leftmost child has pointer to next sibling which points
to next sibling etc.

Applications of trees
• Most languages (natural and computer) have a

recursive, hierarchical structure.
• This structure is implicit in ordinary textual

representation.
• Recursive structure can be made explicit by

representing sentences in the language as
trees: abstract syntax trees (AST’s)

• AST’s are easier to optimize, generate code
from, etc. than textual representation.

• Converting textual representations to AST: job of
parser

Example
• Expression grammar:

E integer
E (E + E)

• Tree representation:
– first rule: create a node with

integer
– second rule: create a node with

“+” as datum, tree for first
operand as its left sub-tree, and
tree for second operand as its
right sub-tree

• In textual representation,
parentheses show hierarchical
structure. In tree representation,
hierarchy is explicit in the
structure of the tree.

-34 -34

(2 + 3) +

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text Tree representation

AST generation
for simple expression language

static TreeCell expCodeGen(String fileName) {//returns AST for expression in file
CS211In f = new CS211In(fileName);
return getExp(f); //no error checking to keep things simple

}
static TreeCell getExp(CS211In f) {//no error checking to keep it simple

switch (f.peekAtKind()) {
case CS211In.INTEGER: //E integer

return new TreeCell(f.getInt());
case CS211In.OPERATOR: //E (E+E)

{ f.check(‘(‘);
TreeCell left = getExp(f);
f.check(‘+’);
TreeCell right = getExp(f);
f.check(‘)’);
return new TreeCell(“+”, left, right);

}
default: return null; //error

}
}

3

Recursion on trees

• Recursive methods can be written to
operate on trees in the obvious way.

• In most problems
– base case: empty tree

• sometimes base case is leaf node
– recursive case: solve problem on left and right

sub-trees, and then put solutions together to
compute solution for tree

• Analog of linear search in lists: given tree
and an object, find out if object is stored in
tree.

• Trivial to write recursively; harder to write
iteratively.

public static boolean treeSearch(Object o, TreeCell t) {
if (t == null) return false;
else return t.getDatum().equals(o) ||

treeSearch(o, t.getleft()) ||
treeSearch(o, t.getRight());

}

Tree search

9

2 3 5 7

2

0

Walks of tree

• Example on last
slide showed pre-
order walk of tree:
– process root
– process left sub-tree
– process right sub-tree

• Intuition: think of
prefix representation
of expressions

2

1

3

In-order and post-order walks
• In-order walk: infix

– process left sub-tree
– process root
– process right sub-tree

• Post-order walk: postfix
– process left sub-tree
– process right sub-tree
– process root

public static boolean treeSearch(Object o,
TreeCell t) {

if (t == null) return false;
else return

treeSearch(o, t.getleft()) ||
t.getDatum().equals(o) ||
treeSearch(o, t.getRight());

}

public static boolean treeSearch(Object o,
TreeCell t) {

if (t == null) return false;
else return

treeSearch(o, t.getleft()) ||
treeSearch(o, t.getRight())||
t.getDatum().equals(o);

}

4

Some useful routines
//determine is a TreeCell is a leaf node
public static boolean isLeaf(TreeCell t) {

return (t != null) && (t.getLeft() == null) && (t.getRight() == null);
}

//compute height of tree using post-order walk
public static int height(TreeCell t) {

if (t == null) return –1; //height is undefined for empty tree
if (isLeaf(t)) return 0;
else return 1 + Math.max(height(t.getLeft()), height(t.getRight()));

}

//compute number of nodes in tree using post-order walk
public static int nNodes(TreeCell t) {

if (t == null) return 0;
else return 1 + nNodes(t.getLeft()) + nNodes(t.getRight());

}

Example

• Generate textual representation from AST.

public static String flatten(TreeCell t) {
if (t == null) return “”;
if (isLeaf(t)) return t.getDatum();
else return “(“ + flatten(t.getLeft()) + t.getDatum() + flatten(t.getRight()) + “)” ;

+

2 3 5 7

+

+

Useful facts about binary trees
• Maximum number of

nodes at depth d = 2d

• If height of tree is h,
– minimum number of nodes it

can have = h+1
– maximum number of nodes

it can have is =
20 + 21 + … + 2h = 2h+1 -1

• Full binary tree of height h:
– all levels of tree upto depth

h are completely filled.

5

4

7 8

2

0 4

depth

0

1

2

5

2

4

Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

Tree with header element

• As in case of lists, some authors prefer to
have an explicit Tree class which contains
a reference to the root of the tree.

• With this design, methods that operate on
trees can be made into instance methods
in this class, and the root of the tree does
not have to be passed in explicitly to
method.

• Feel free to use whatever works for you.

5

Tree with parent pointers
• In some applications, it is

useful to have trees in which
nodes other than root have
references to their parents.

• Tree analog of doubly-linked
lists.

class TreeWithPPCell{
protected Object datum;
protected TreeWithPPCell

left, right, parent;
…..appropriate getter and
setter methods…

}

5

4

7 8

2

Summary
• Tree is a recursive data structure built from

TreeCell class.
– special case: binary tree

• Binary tree cells have both a left and a right
“successor”
– called children rather than successors
– similarly, parent rather than predecessor
– generalization of parent and child to ancestors and

descendants
• Trees are useful for exposing the recursive

structure of natural language programs and
computer programs.

