
1

Recursion
Recursion

• Let us now study recursion in its own right.
• Recursion is a powerful technique for specifying

functions, sets, and programs.
• Recursively-defined functions and programs

– factorial
– counting combinations
– differentiation of polynomials

• Recursively-defined sets
– grammars
– language of expressions

Factorial function

• How many ways can you arrange n distinct
objects? This function is called fact(n).
– If n = 1, then there is just one way.
– If n > 1, number of ways =

n* number of ways to arrange (n-1) objects
(see next slide for example)

– fact(1) = 1
fact(n) = n*fact(n-1) | (n > 1)

• Another description of fact(n):
fact(n) = 1*2*…*n = n!

• Convention: fact(0) = 1

Permutations of

Permutations of non-green blocks

From each permutation of non-green
blocks, we can generate 4 permutations
of the four blocks.

Total number = 4*6 = 24 = 4!

2

Recursive program: factorial

static int factorial(int n) {
if (n == 0) return 1;
else return n*factorial(n-1);

}

fact(0) = 1

fact(n) = n*fact(n-1) | (n > 0)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)
1

1

2

6

24

Execution of factorial(4)

General approach to writing
recursive functions

1. Try to find a parameter of problem (say n) such that
solution to problem can be obtained by combining
solutions to same problem with smaller values of n.

(eg.) chess-board tiling problem, factorial
2. Figure out base case or base cases by determining small

enough values of n for which you can write down the
solution to problem.

3. Verify that for any value of n of interest, applying the
reduction step of step 1 repeatedly will ultimately hit one
of the base cases.

4. Write the code.

Fibonacci function

• Mathematical definition:
fib(0) = 1
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2) | n > 1

fibonacci sequence: 1,1,2,3,5,8,13,….

two base cases

static int fib(int n) {
if (n==0) return 1;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} Statue of Fibonacci in Pisa, Italy

3

Execution of fibonacci
static int fib(int n) {

if (n==0) return 1;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

Execution of fib(4)

S = {A,B,C,D,E}
Consider subsets of 2 elements.
Subsets containing A: 4C1

{A,B}, {A,C}, {A,D},{A,E}
Subsets not containing A: 4C2

{B,C},{B,D},{C,D},{B,E},{C,E},{D,E}
Therefore, 5C2 = 4C1 + 4C2

Example:

Recursively-defined functions:
Counting Combinations

How many ways can you choose r items from

a set S of n distinct elements? nCr

Counting Combinations

• How many ways can you choose r items from a set S of n
distinct elements?
– Consider some element A.
– Any subset of r items from set S either contains A or it does not.
– Number of subsets of r items that do not contain A = n-1Cr .
– Number of subsets of r items that contain A = n-1Cr-1.
– Required result follows.

• You can also show that
nCr = n!/r!(n-r)!

nCr = n-1Cr + n-1Cr-1 | n > r > 0
nCn = 1
nC0 = 1

Counting combinations has two base cases

• Coming up with right base cases can be tricky!
• General idea:

– Figure out argument values for which recursive case cannot be
applied.

– Introduce a base case for each one of these.
• Rule of thumb: (not always valid) if you have r recursive

calls on right hand side of function definition, you may
need r base cases.

nCr = n-1Cr + n-1Cr-1 | n > r > 0
nCn = 1
nC0 = 1 Two base cases

4

Recursive program:
counting combinations

nCr = n-1Cr + n-1Cr-1 | n > r > 1
nCn = 1
nC0 = 1

static int combs(int n, int r){//assume n>r>1
if ((r == 0) return 1;//base case
else if (n == r) return 1;//base case
else return combs(n-1,r) + combs(n-1,r-1);

}

Polynomial differentiation

Recursive cases:
d(uv)/dx = udv/dx + v du/dx
d(u+v)/dx = du/dx + dv/dx
Base cases:
dx/dx = 1
dc/dx = 0

d(3x)/dx = 3dx/dx + x d(3)/dx = 3*1 + x*0 = 3

Example:

Positive integer powers

• Let us write this using standard function notation:
power(a,n) = a*power(a,n-1) | n > 0
power(a,0) = 1

aaaan *....**= (n times)

Alternative description:

1

0

*
1

−=

=
nn aaa

a

Recursive program for power

power(a,n) = a*power(a,n-1) | n > 0
power(a,0) = 1

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}

5

Smarter power program
• Power computation:

– If n is 0, an = 1
– If n is non-zero and even, an = (an/2)2

– If n is odd, an = (an/2)2 * a
• Java note: If x and y are integers, expression “x/y” returns

the integer part of the quotient.
• Example:

a5 = (a5/2)2 * a = (a2)2 * a = ((a2/2)2) 2* a
= ((a)2) 2* a

Note: this requires 3 multiplications rather than 5.
• What if n were higher?

– savings would be higher
• We will see later that recursive power is “much faster” than

straight-forward computation.
– Straight-forward computation: n multiplications
– Smarter computation: log(n) multiplications

Smarter power program in Java
• If n is non-zero and even, an = (an/2)2

• If n is odd, an = (an/2)2 * a

static int coolPower(int a, int n){
if (n == 0) return 1;
else

{int halfPower = coolPower(a,n/2);
if ((n/2)*2 == n) //n is even

return halfPower*halfPower;
else //n is odd

return halfPower*halfPower*a;}
}

Implementing recursive methods

• Ur-Java implementation model already supports
recursive methods.

• Key idea:
– each method invocation gets its own frame
– frame for method invocation I: bottom to top order

• return value: where function return value is to be saved before
returning to caller

– lowest location of frame
– on return, this location becomes part of frame of caller

• method parameters
• method variables

Frame for
invocation of g

Suppose method f invokes method g(p1,p2,p3).
When g returns, it leaves its return value on top of stack.
Analogy: arithmetic expression evaluation

(2 + 3) is implemented as PUSHIMM 2
PUSHIMM 3
ADD

Frame for
invocation of f

Frame for
invocation of f

p1
p2
p3

Frame for
invocation of f

return value

6

Let us look at how stack frames are pushed and popped
for execution of the invocation power(5,3).

At conceptual level, here is the sequence of method invocations:
power(5,3) power(5,2) power(5,1) power(5,0)

static int power(int b, int p){

if (p == 0) return 1;

else return power(b,p-1)*b;

}

1525125

p

public static int power(int b, int p){
if (p == 0) return 1;
else return power(b,p-1)*b;

}

1

p
b

3
5

p
b

2
5

b 5

p
b

3
5

p
b

2
5

b
p 1

5

p
b

0
5

p
b

3
5

p
b 5

2

p
b

3
5

power(5,3)

p
b

3
5

p
b

2
5

5

p
b

3
5

p
b

2
5

b
p 1

5

125

p
b

3
5

25

rv rv rv rv rv

rvrv

rv rv

rv

rv

rv

rv rv rvrv
i:
i:
i:

i:
i:
i:
i:
i:
i:

i:
i:
i:
i:
i:
i:
i:
i:
i:

i:
i:
i:
i:
i:
i:
i:
i:
i:
i:
i:
i:

1i:
i:
i:
i:
i:
i:
i:
i:
i:
i:

i:
i:
i:
i:
i:
i:
i:

i:
i:
i:
i:i:

Exercise

• Draw similar picture for execution of fib(5).

Something to think about
• At any point in execution, many invocations of
power may be in existence, so many stack frames
for power invocations may be in stack area.

• This means that variables p and b in text of
program may correspond to several memory
locations at any time.

• How does processor know which location is
relevant at any point in computation?
– another example of association between name and

“thing” (in this case, stack location)

7

• Answer:
– Computational activity takes place only in the topmost

(most recently pushed) frame.
– Special register called Frame Base Register (FBR) keeps

track of where the topmost frame is.
• When a method is invoked, a frame is created for that method

invocation, and FBR is set to point to that frame.
• When the invocation returns, FBR is restored to what it was before

the invocation.
• How does machine know what value to restore in FBR?

– See later

– In low-level machine code, addresses of parameters and
local variables are never absolute memory addresses (like
102 or 5099), but are always relative to the FBR (like –2
from FBR or +5 from FBR).

static int power(int b, int p){
if (p == 0) return 1;
else return b*power(b,p-1);

}

p
b

3
5

p
b 5

p
b

3
5

p
b

2
5

b
p 1

5

p
b

0
5

p
b

3
5

rv 25

2

FBR FBR

FBR

rv

rv

rv

rv

rv

rv

i:
i:
i:
i:
i:
i:

i:
i:
i:
i:
i:
i:
i:
i:
i:
i:
i:
i:

i:
i:
i:

Editorial comments

• Recursion is a very powerful way of defining functions.
• Problems that seem insurmountable can often be solved in

a ‘divide-and-conquer’ way
– Split big problem into smaller problems of the same kind, and

solve smaller problems
– Put solution to smaller problems together to form solution for big

problem
• Recursion is often useful for expressing divide-and-

conquer algorithms in a simple way.
• We will use parsing of languages to demonstrate this in the

next lecture.

