Interfaces
and

Sub?yping

Interfaces

» So far, we have talked about interfaces
informally in the ordinary English sense of
the word.

— “interface to a class tells the client how to
obtain the functionality implemented in that
class”

+ Java has a construct called interface which
can be used formally for this purpose

— and for doing some other really cool things...

Java interface

Class IntPuzzle implements IPuzzle{

interface IPuzzle{ | | -
void scramble(); public void scramble(){
int tile(int r, int ¢);
boolean move(char d);

}

public int tile(int r, int ¢){

3

public boolean move(char d){
o}
}

* Name of interface: [Puzzle

* A class can implement this interface by implementing
public instance methods with the names and type
signatures specified in the interface.

* The class may implement other methods.

Notes

* Interface itself cannot be instantiated.
— incomplete specification

« It is not enough for a class to just have implementations
of interface methods; class header must also assert
“implements I”” for Java to recognize that the class
implements interface I.

A class may implement several interfaces.

— (eg) class X implements [Puzzle, IRaq {

Why interface construct?

» One use of interfaces: software engineering
— specifying and enforcing boundaries between
different parts of a team project, as in Puzzle
example.
* But interfaces can do much more.

— Interfaces let you write more “generic” code
that reduces code duplication.

Example of code duplication

* Suppose we have two implementations of puzzles:
— Class IntPuzzle uses an inf to hold state
— Class ArrayPuzzle uses an array to hold state

» Assume client wants to use both implementations
in code

— perhaps for benchmarking both implementations to pick
the best one?

— client code has a display method as always to print out
puzzles

* What would the display method look like?

Class Client{
IntPuzzle pl = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();

....display(pl)...display(p2)...

public static void display(IntPuzzle p){

for (int r = 0; r < 3; r++)
for (int ¢ = 0;c<3;c++) {
System.out.print(p.tile(r,c)); Code duplicated

System.out.print(‘ °); because types

3 f—
IntPuzzl
public static void display(ArrayPuzzle p){ /TI‘I‘:;IZ)UCZET:

for (intr=0; r <3; ri+) are different

for (int ¢ = 0;c<3;c++) {
System.out.print(p.tile(r,c)); \>
System.out.print(‘ °);

1 —

Observation

» Two display methods are needed because types
IntPuzzle and ArrayPuzzle are different, and
parameter p must have one type or the other.

* Ironically, the code inside the two methods is
identical.

— Code relies only on assumption that parameter p is passed
an object that has an instance method tile(int,int).

* Is there a way to avoid this code duplication?

— Use interfaces and sub-typing

Interfaces as types

Name of an interface can be used as a variable type.

— (eg) IPuzzle p1, p2;
Class that implements the interface is said to be a sub-type of
the interface type.

— IntPuzzle and ArrayPuzzle are sub-types of [Puzzle.
Interface is said to be a super-type of those classes.

— IPuzzle is a super-type of type IntPuzzle and ArrayPuzzle.

Note
(Puzzdey CIRan '
@‘@

* Since a class can implement several interfaces, it
may have many super-types.

Interfaces:

Classes:

* An interface can be implemented by several
classes, so it may have many sub-types.

Paradox with interfaces as types

* We cannot instantiate an interface I.
— Interface is a partial specification.
» If we cannot create objects of type I, why bother
permitting interface names to be types?
— (eg) IPuzzle p1,p2;
— Fine, but what would we ever assign to pl and p2?!!
¢ To understand this, let us look at a real-life
analogy.

Names, Objects and Types

* In programming languages, like in real life,
we attribute type both to names (variables)
and to objects.

» Example from real life: gender

— Two types: Male and Female

— These types are assigned to people (objects):
* The President of Cornell is a Male.
* The Provost of Cornell is a Female.

— These types are also assigned to names:
* Male George, Sam, Helmut, Bubba;
* Female Rie, Naomi, Indira, Melanie;

Unisex names

» Some names can refer to people of either
gender:
(eg): Sandy, Pat, Jackie
» How do we fit unisex names into our
classification?

e Here is an idea....

Sub-typing in real life
C Human >

ST

* Letus add a new type called Human.
¢ Humans have certain functionalities:
— They walk upright.
— They have juxtaposed thumbs.

— They are intelligent....

* Male and female are sub-types of type Human because
they implement this functionality although in different
ways.

« Like an interface, type Human cannot be instantiated
directly: every human must be either a male or a female.

Sub-types and subsets

s

Sub-types Subsets

+ Sub-types and subsets are distinct concepts.
» Sub-types are characterized by some common
functionality.
— Sub-type female in our example is characterized by
ability to give birth.
* In this example, a mixture of males and females is a
subset of type human, but it is not a sub-type.

Back to names

* Using these types, we can now give types to
unisex names as well:
* Male George, Sam, Helmut, Bubba;
« Female Rie, Naomi, Indira, Melanie;

* Human Jo, Sandy, Pat;

Naming people

» Simple picture without sub-typing:
— Male objects get male names.
— Female objects get female names.

» Examples:
//we created a new male object and named it George
George = new Male(); //type checks
//give object named Sam the alias Bubba
Bubba = Sam; //type checks
//give object named Bubba the alias Melanie

Melanie = Bubba;//type mismatch

+ In last example, we do not need to know anything about

who Bubba is to see that there is a type mismatch.

Up-casting

* Situation is a little more complex with unisex
names (sub-typing).
» Example: Sandy = new Female();
— Type of reference returned by RHS is Female.
— Type of LHS name is Human.
— Nevertheless, no type error because Female is sub-type
of Human.
» Up-casting: type of RHS reference is sub-type of
type of LHS name.
» Up-casting is always type-correct.
» Example: Sandy = Laura;

— You do not need to know the object named Laura to
determine that the assignment is type-correct.

Down-casting

« Is this type-correct?
Bubba = Sandy;
* Answer: depends.

— Type of RHS name (reference) Sandy is Human which is
super-type of LHS name

— Type of object named Sandy: either Male or Female

— Whether or not the assignment is legal depends not on the
type of the RHS reference but on the type of the actual object.

* Down-casting: Type of LHS name is sub-type of RHS
reference.

» Down-casting may or may not be legal
— need to look at object to determine legality

Resolution of paradox with
interfaces as types

+ Java allows up-casting:
— IPuzzle pl = new ArrayPuzzle();
— IPuzzle p2 = new IntPuzzle();
* Note:
— Type of reference returned by right-hand side
expression of first statement is ArrayPuzzle.
— Type of variable on left-hand side is IPuzzle.

— Two types are different, but type of rhs reference is a
sub-type of type of the variable.

Why up-casting?

* Sub-typing and up-casting allow you to avoid
code duplication in many situations.

» Puzzle example: you and client agree on interface

Your code

Class IntPuzzle implements [Puzzle {
...scramble()...tile()...move()...twist()

1

Puzzl Class ArrayPuzzle implements [Puzzle {
wzzie. | | . scramble()...tile()...move()...
}
interface [Puzzle{
void scramble(); Class IntPuzzle implements a method called twist
int tile(int, int c); which is not a method of interface IPuzzle.
boolean move(char d);
}
Client Code Method execution
public static void display(IPuzzle p){
Class Client{

IntPuzzle pl = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
....display(pl)...display(p2)... Up-casting:
Objects of type IntPuzzle
public static void display(IPuzzle p){ and ArrayPuzzle are
for (intr=0; r <3; r++) passed to parameter of
for (int ¢ = 0;c<3;c++) { type IPuzzle.
System.out.print(p.tile(r,c));
System.out.print(‘ °);
1

for (int r = 0; r < 3; r++)
for (int ¢ = 0;c<3;c++) {
System.out.print(p.tile(r,c));
System.out.print(‘ °);
1

* Subtle point: which tile method is invoked in code shown
above?
— tile method in IntPuzzle class??
« What if object passed in is of type ArrayPuzzle?
— tile method in ArrayPuzzle class??
« What if object passed in is of type IntPuzzle?
— tile method in IPuzzle interface??
« Huh??

» To understand this, let us look again at execution model.

Program area

‘ |IntPuzzlc -gcramble..gle...mgve. .. | |ArrayPuzzlc -gcramble. Rlc .move..

- Hek\\

o

-

Stack In uzzle
i:

i

TPuzzle: _./ scramble

nlc

o

scramble

move|
_— tile

move

Resolving the name “p.tile”

« Stack frame for invocation of display has storage
for variables p,r,c.
* Suppose method is passed an IntPuzzle object in
parameter p as shown.
* Invocation “p.tile(r,c)” in body of display is
executed as discussed earlier:
— Look up method tile in object O referenced by p.
— Invoke that method passing it this (object O), r.c.

— In our example, therefore, we would invoke the tile
method implemented in the IntPuzzle class.

Think

* Type of paramater p: [Puzzle
— IPuzzle itself does not have a tile method!

» Actual method that gets invoked is implemented
sometimes in the ArrayPuzzle class and
sometimes in the IntPuzzle class!

* Dynamic method binding:

— Name “p.tile” is not resolved to a single method.
— In different invocations, name may be resolved to
different methods.

* Method display is sometimes said to be a
polymorphic/generic method.

— Parameters are not restricted to be of a single type.

Note on type-checking

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)
for (int ¢ = 0;c<3;c++) {
System.out.print(p.tile(r,c));
System.out.print(‘ °);

3

» Compile-time check: does type of reference p (IPuzzle)
have a method called tile with the right type signature? If
not, error.

» Runtime: go into object referred to by p and look up its tile
method.

* Remember: type of reference MUST have appropriate
method even though method that is invoked at runtime is in
the class of the object.

Other languages

* Dynamic method binding is a powerful
mechanism that enables generic programming.
 In languages like C, effect of dynamic method
binding can be obtained by passing function
pointers, which may lead to weird bugs because it
is not type-safe.
 Java-style dynamic method binding is more robust
and less prone to errors.
— Implementation of Java uses function pointers.
— Java programmers cannot use function pointers directly.
— Compare: GOTO vs. structured programming.

Note on casting of references

» Think of reference as a pair <type,address>.

* Type of reference is always a super-type of
type of object.

* Up- and down-casting do not change either
the object or the reference — they produce a
new reference of a different type (analogy:
arithmetic operators).

IntPuzzle p = new IntPuzzle();
TPuzzle z = (IPuzzle)p;

n IPuZZl

T N

(nPuzzle] F— Heap
Stack \;
//
;:?;jzle /// scramble

tile

move

Another use of up-casting

* Sub-types and up-casting are useful for storing
heterogeneous objects in data structures.

» Example:
IPuzzle[] AP = new IPuzzle[0..9];
AP[0] = new IntPuzzle();
AP[1] = new ArrayPuzzle();
* Note up-casting:
— names AP[0] etc. are of type [Puzzle

— Objects created on right hand sides are of sub-types of
[Puzzle.

instanceof

» Suppose we stick a bunch of ArrayPuzzle and IntPuzzle
objects into an [Puzzle array AP.

» Suppose AP is passed to another method which walks
over the array and counts how many IntPuzzle objects
there are.

» How does this method examine the type of the objects
stored in array AP?

boolean b = AP[i] instanceof IntPuzzle;
//b will be true if AP[i] refers to IntPuzzle object; false otherwise
//general syntax: reference instanceof className

Down-casting in Java

 Java permits down-casting but casting is specified
explicitly.

public static void foo (IPuzzle p){
if (p instanceof IntPuzzle)
IntPuzzle ip = (IntPuzzle)p;
b
» Compile-time: check that type of reference p is
super-type of type of LHS name ip.
— Making you write cast explicitly forces you to
document down-casting.
* Run-time: check that type of object referenced by
RHS is a sub-type of type of LHS name.

Down-casting in real life

s

+ Canine names
Canine Spot, Rover;
* George = (Male)Sandy;
— Compile-time: is type of reference Sandy (Human) a super-type of
type of George (Male)? Yes.
— Run-time: is object referenced on RHS a sub-type of Male?
« No: error - throw class cast exception.

« Yes: everything is cool.
* Spot = (Canine)Sandy;
— Compile-time: is type of reference Sandy (Human) a super-type of
type of Spot (Canine)? No. Compiler error.

Note on down-casting

Animal a = new Female();

@ Human h = (Human)a;

 In down-casting, the types of the lhs variable, the
rhs reference, and the object the rhs reference
points to could all be different as in this example.

Why down-casting?

* Sometimes you want to
— access an array of heterogenous objects

— invoke a method on objects of some sub-type of
array element type

— method is not one of the interface methods, but
is implemented only by that sub-type.

* In this situation, you can use down-casting.

Example

void twister(IPuzzle[] AP) {
for (int I = 0; I<AP.length; I++) {
if (AP[I] instanceof IntPuzzle)
{IntPuzzle p = (IntPuzzle)AP[I];
p-Twist(); //method implemented only by IntPuzzle

1

Poor use of down-casting

void mover(IPuzzle[] AP) { void mover(IPuzzle[] AP) {
for (int I = 0; I<AP.length; I++) { for (int I = 0;I<AP.length;I++)
if (AP[I] instanceof IntPuzzle) AP[I].move(‘N’);
((IntPuzzle)AP[I]).move(‘N"); }

else ((ArrayPuzzle)AP[I]).move(‘N’);

* Heterogenous data in data structure AP.

* Do not use down-casting if you are invoking interface
method (in this case, move) on objects in data structure.

* Code on left will have to be modified if you add another
class that implements interface.

» Code on right works without modification: code reuse is
promoted.

Super-interfaces

+ Suppose you want to extend the specification of an
interface to include more methods.
— TPuzzle: scramble, move, tile
— ImprovedPuzzle: scramble, move, tile, SamLoyd

» Two approaches to writing down extended
interface:
— Start from scratch and write an interface
— Extend the IPuzzle interface

Extending interfaces

interface [Puzzle{
void scramble();
int tile(int r, int c);
boolean move(char d);
}
interface ImprovedPuzzle extends [Puzzle{
void SamLoyd();

*[Puzzle is a super-interface of ImprovedPuzzle
interface.

*ImprovedPuzzle interface is a sub-interface of
[Puzzle.

*ImprovedPuzzle can be used as a type for variables
like any other interface.

«It is a sub-type of IPuzzle type.

Super-interfaces

* Interface can extend multiple super-
interfaces.

* Class that implements an interface must
implement all methods declared in super-
interfaces.

Type Hierarchy

Interfaces:

ImprovedPuzzle

Classes:

//There is no need to specify explicitly that AClass implements
//interface [Puzzle.

* Suppose class C implements a sub-interface
IB. There is no need to declare super-
interfaces of IB in the “implements” clause
of class C.

* Rules for up-casting and down-casting
references stay the same as before.

Editorial comments

* Interfaces have two main uses:
— Software engineering:
* Good fences make good neighbors.
— Sub-typing:
« Type of interface is super-type of type of class implementing that
interface.
« Use sub-types to write more generic, polymorphic code.

 Sub-typing is a central idea in programming
languages.
— Inheritance gives another method for creating sub-types.
+ Sub-typing is sometimes referred to informally as
is-a relationship.
— (eg) Every Female is-a Human.

» Up-casting: super-type name on lhs of assignment
— Example: Sandy = Laura;
— Used in writing polymorphic methods and for declaring data
structures that can hold heterogenous data
— Up-casting is always legal.
» Down-casting: sub-type name on lhs of assignment
— Explicit cast required in Java.
— Example: Laura = (Female) Sandy;

— May or may not be legal:
« Compile-time check: Is type of lhs reference a sub-type of rhs
reference? (eg. Is Female a sub-type of Human?)
— Runtime check inserted: may throw exception
« Type of object on rhs may not be a sub-type of type of lhs reference.
Human Sandy = new Female();
Male George = (Male) Sandy;//class cast exception

— Less common than up-casting

* Dynamic method binding
— Method call r.m(..,..,..);
— Remember that type of reference r may be different
from type of object pointed to by r.
— Compile-time check: does type of reference r have a
method named m with appropriate parameter types?

— Run-time: look inside object named by r and invoke
method named m with the appropriate type signature.
» Sub-typing and dynamic method binding permit
you to write polymorphic/generic methods to
avoid duplicating code for each type.

