
1

Interfaces
and

Sub-typing

Interfaces

• So far, we have talked about interfaces
informally in the ordinary English sense of
the word.
– “interface to a class tells the client how to

obtain the functionality implemented in that
class”

• Java has a construct called interface which
can be used formally for this purpose
– and for doing some other really cool things…

Java interface

• Name of interface: IPuzzle
• A class can implement this interface by implementing

public instance methods with the names and type
signatures specified in the interface.

• The class may implement other methods.

interface IPuzzle{
void scramble();
int tile(int r, int c);
boolean move(char d);

}

Class IntPuzzle implements IPuzzle{
……
public void scramble(){

…..}
public int tile(int r, int c){

…..}
public boolean move(char d){

…..}
}

Notes
• Interface itself cannot be instantiated.

– incomplete specification
• It is not enough for a class to just have implementations

of interface methods; class header must also assert
“implements I” for Java to recognize that the class
implements interface I.

• A class may implement several interfaces.
– (eg) class X implements IPuzzle, IRaq {

……}

2

Why interface construct?

• One use of interfaces: software engineering
– specifying and enforcing boundaries between

different parts of a team project, as in Puzzle
example.

• But interfaces can do much more.
– Interfaces let you write more “generic” code

that reduces code duplication.

Example of code duplication

• Suppose we have two implementations of puzzles:
– Class IntPuzzle uses an int to hold state
– Class ArrayPuzzle uses an array to hold state

• Assume client wants to use both implementations
in code
– perhaps for benchmarking both implementations to pick

the best one?
– client code has a display method as always to print out

puzzles
• What would the display method look like?

Class Client{
IntPuzzle p1 = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
….display(p1)…display(p2)…

public static void display(IntPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0;c<3;c++) {
System.out.print(p.tile(r,c));
System.out.print(‘ ‘);

}}
public static void display(ArrayPuzzle p){

for (int r = 0; r < 3; r++)
for (int c = 0;c<3;c++) {

System.out.print(p.tile(r,c));
System.out.print(‘ ‘);

}}
}

Code duplicated
because types
IntPuzzle and
ArrayPuzzle

are different.

Observation
• Two display methods are needed because types

IntPuzzle and ArrayPuzzle are different, and
parameter p must have one type or the other.

• Ironically, the code inside the two methods is
identical.
– Code relies only on assumption that parameter p is passed

an object that has an instance method tile(int,int).

• Is there a way to avoid this code duplication?
– Use interfaces and sub-typing

3

Interfaces as types

• Name of an interface can be used as a variable type.
– (eg) IPuzzle p1, p2;

• Class that implements the interface is said to be a sub-type of
the interface type.
– IntPuzzle and ArrayPuzzle are sub-types of IPuzzle.

• Interface is said to be a super-type of those classes.
– IPuzzle is a super-type of type IntPuzzle and ArrayPuzzle.

IPuzzle

IntPuzzle ArrayPuzzle

Note

• Since a class can implement several interfaces, it
may have many super-types.

• An interface can be implemented by several
classes, so it may have many sub-types.

IPuzzle IRan IRaq

AClass BClass

Interfaces:

Classes:

Paradox with interfaces as types

• We cannot instantiate an interface I.
– Interface is a partial specification.

• If we cannot create objects of type I, why bother
permitting interface names to be types?
– (eg) IPuzzle p1,p2;
– Fine, but what would we ever assign to p1 and p2?!!

• To understand this, let us look at a real-life
analogy.

Names, Objects and Types
• In programming languages, like in real life,

we attribute type both to names (variables)
and to objects.

• Example from real life: gender
– Two types: Male and Female
– These types are assigned to people (objects):

• The President of Cornell is a Male.
• The Provost of Cornell is a Female.

– These types are also assigned to names:
• Male George, Sam, Helmut, Bubba;
• Female Rie, Naomi, Indira, Melanie;

4

Unisex names

• Some names can refer to people of either
gender:

(eg): Sandy, Pat, Jackie
• How do we fit unisex names into our

classification?
• Here is an idea….

Sub-typing in real life

• Let us add a new type called Human.
• Humans have certain functionalities:

– They walk upright.
– They have juxtaposed thumbs.
– They are intelligent….

• Male and female are sub-types of type Human because
they implement this functionality although in different
ways.

• Like an interface, type Human cannot be instantiated
directly: every human must be either a male or a female.

Human

Male Female

Sub-types and subsets
Human

Male Female

Male Female

Human

Sub-types Subsets

• Sub-types and subsets are distinct concepts.
• Sub-types are characterized by some common

functionality.
– Sub-type female in our example is characterized by

ability to give birth.
• In this example, a mixture of males and females is a

subset of type human, but it is not a sub-type.

Back to names

• Using these types, we can now give types to
unisex names as well:

• Male George, Sam, Helmut, Bubba;
• Female Rie, Naomi, Indira, Melanie;
• Human Jo, Sandy, Pat;

5

Naming people
• Simple picture without sub-typing:

– Male objects get male names.
– Female objects get female names.

• Examples:
//we created a new male object and named it George

George = new Male(); //type checks
//give object named Sam the alias Bubba

Bubba = Sam; //type checks
//give object named Bubba the alias Melanie

Melanie = Bubba;//type mismatch

• In last example, we do not need to know anything about
who Bubba is to see that there is a type mismatch.

Up-casting
• Situation is a little more complex with unisex

names (sub-typing).
• Example: Sandy = new Female();

– Type of reference returned by RHS is Female.
– Type of LHS name is Human.
– Nevertheless, no type error because Female is sub-type

of Human.
• Up-casting: type of RHS reference is sub-type of

type of LHS name.
• Up-casting is always type-correct.
• Example: Sandy = Laura;

– You do not need to know the object named Laura to
determine that the assignment is type-correct.

Down-casting
• Is this type-correct?

Bubba = Sandy;
• Answer: depends.

– Type of RHS name (reference) Sandy is Human which is
super-type of LHS name

– Type of object named Sandy: either Male or Female
– Whether or not the assignment is legal depends not on the

type of the RHS reference but on the type of the actual object.
• Down-casting: Type of LHS name is sub-type of RHS

reference.
• Down-casting may or may not be legal

– need to look at object to determine legality

Resolution of paradox with
interfaces as types

• Java allows up-casting:
– IPuzzle p1 = new ArrayPuzzle();
– IPuzzle p2 = new IntPuzzle();

• Note:
– Type of reference returned by right-hand side

expression of first statement is ArrayPuzzle.
– Type of variable on left-hand side is IPuzzle.
– Two types are different, but type of rhs reference is a

sub-type of type of the variable.

6

Why up-casting?

• Sub-typing and up-casting allow you to avoid
code duplication in many situations.

• Puzzle example: you and client agree on interface
IPuzzle.

interface IPuzzle{
void scramble();
int tile(int r, int c);
boolean move(char d);

}

Your code

Class IntPuzzle implements IPuzzle{
…scramble()…tile()…move()…twist()

}

Class ArrayPuzzle implements IPuzzle{
……scramble()...tile()…move()…

}

Class IntPuzzle implements a method called twist
which is not a method of interface IPuzzle.

Class Client{
IntPuzzle p1 = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
….display(p1)…display(p2)…

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)

for (int c = 0;c<3;c++) {
System.out.print(p.tile(r,c));
System.out.print(‘ ‘);

}}
}

Client Code

Up-casting:
Objects of type IntPuzzle
and ArrayPuzzle are
passed to parameter of
type IPuzzle.

Method execution
public static void display(IPuzzle p){

for (int r = 0; r < 3; r++)
for (int c = 0;c<3;c++) {

System.out.print(p.tile(r,c));
System.out.print(‘ ‘);

}}

• Subtle point: which tile method is invoked in code shown
above?
– tile method in IntPuzzle class??

• What if object passed in is of type ArrayPuzzle?
– tile method in ArrayPuzzle class??

• What if object passed in is of type IntPuzzle?
– tile method in IPuzzle interface??

• Huh??

• To understand this, let us look again at execution model.

7

IntPuzzle: ..scramble..tile…move… ArrayPuzzle:..scramble..tile..move..

Program area

Stack

p
r
c

scramble

IntPuzzle

ArrayPuzzle

Heap

i:
i:
IPuzzle:

tile
move

scramble
tile

move

Resolving the name “p.tile”

• Stack frame for invocation of display has storage
for variables p,r,c.

• Suppose method is passed an IntPuzzle object in
parameter p as shown.

• Invocation “p.tile(r,c)” in body of display is
executed as discussed earlier:
– Look up method tile in object O referenced by p.
– Invoke that method passing it this (object O), r,c.
– In our example, therefore, we would invoke the tile

method implemented in the IntPuzzle class.

Think
• Type of paramater p: IPuzzle

– IPuzzle itself does not have a tile method!
• Actual method that gets invoked is implemented

sometimes in the ArrayPuzzle class and
sometimes in the IntPuzzle class!

• Dynamic method binding:
– Name “p.tile” is not resolved to a single method.
– In different invocations, name may be resolved to

different methods.
• Method display is sometimes said to be a

polymorphic/generic method.
– Parameters are not restricted to be of a single type.

Note on type-checking
public static void display(IPuzzle p){

for (int r = 0; r < 3; r++)
for (int c = 0;c<3;c++) {

System.out.print(p.tile(r,c));
System.out.print(‘ ‘);

}}

• Compile-time check: does type of reference p (IPuzzle)
have a method called tile with the right type signature? If
not, error.

• Runtime: go into object referred to by p and look up its tile
method.

• Remember: type of reference MUST have appropriate
method even though method that is invoked at runtime is in
the class of the object.

8

Other languages

• Dynamic method binding is a powerful
mechanism that enables generic programming.

• In languages like C, effect of dynamic method
binding can be obtained by passing function
pointers, which may lead to weird bugs because it
is not type-safe.

• Java-style dynamic method binding is more robust
and less prone to errors.
– Implementation of Java uses function pointers.
– Java programmers cannot use function pointers directly.
– Compare: GOTO vs. structured programming.

Note on casting of references

• Think of reference as a pair <type,address>.
• Type of reference is always a super-type of

type of object.
• Up- and down-casting do not change either

the object or the reference – they produce a
new reference of a different type (analogy:
arithmetic operators).

Stack

z

Heap

IntPuzzle p = new IntPuzzle();
IPuzzle z = (IPuzzle)p;

IntPuzzle

IPuzzle
p IntPuzzle

IPuzzle

IntPuzzle

scramble

tile

move

IntPuzzle Another use of up-casting

• Sub-types and up-casting are useful for storing
heterogeneous objects in data structures.

• Example:
IPuzzle[] AP = new IPuzzle[0..9];

AP[0] = new IntPuzzle();
AP[1] = new ArrayPuzzle();

• Note up-casting:
– names AP[0] etc. are of type IPuzzle
– Objects created on right hand sides are of sub-types of

IPuzzle.

9

instanceof

• Suppose we stick a bunch of ArrayPuzzle and IntPuzzle
objects into an IPuzzle array AP.

• Suppose AP is passed to another method which walks
over the array and counts how many IntPuzzle objects
there are.

• How does this method examine the type of the objects
stored in array AP?

boolean b = AP[i] instanceof IntPuzzle;
//b will be true if AP[i] refers to IntPuzzle object; false otherwise
//general syntax: reference instanceof className

Down-casting in Java
• Java permits down-casting but casting is specified

explicitly.

public static void foo (IPuzzle p){
if (p instanceof IntPuzzle)

IntPuzzle ip = (IntPuzzle)p;
….}

• Compile-time: check that type of reference p is
super-type of type of LHS name ip.
– Making you write cast explicitly forces you to

document down-casting.
• Run-time: check that type of object referenced by

RHS is a sub-type of type of LHS name.

Down-casting in real life

• Canine names
Canine Spot, Rover;

• George = (Male)Sandy;
– Compile-time: is type of reference Sandy (Human) a super-type of

type of George (Male)? Yes.
– Run-time: is object referenced on RHS a sub-type of Male?

• No: error - throw class cast exception.
• Yes: everything is cool.

• Spot = (Canine)Sandy;
– Compile-time: is type of reference Sandy (Human) a super-type of

type of Spot (Canine)? No. Compiler error.

Human

Male Female

Canine

Note on down-casting

• In down-casting, the types of the lhs variable, the
rhs reference, and the object the rhs reference
points to could all be different as in this example.

Animal

Female

Human

Male

Animal a = new Female();
Human h = (Human)a;

10

Why down-casting?

• Sometimes you want to
– access an array of heterogenous objects
– invoke a method on objects of some sub-type of

array element type
– method is not one of the interface methods, but

is implemented only by that sub-type.
• In this situation, you can use down-casting.

Example
void twister(IPuzzle[] AP) {

for (int I = 0; I<AP.length; I++) {

if (AP[I] instanceof IntPuzzle)

{IntPuzzle p = (IntPuzzle)AP[I];

p.Twist(); //method implemented only by IntPuzzle

}

}

}

Poor use of down-casting

• Heterogenous data in data structure AP.
• Do not use down-casting if you are invoking interface

method (in this case, move) on objects in data structure.
• Code on left will have to be modified if you add another

class that implements interface.
• Code on right works without modification: code reuse is

promoted.

void mover(IPuzzle[] AP) { void mover(IPuzzle[] AP) {

for (int I = 0; I<AP.length; I++) { for (int I = 0;I<AP.length;I++)

if (AP[I] instanceof IntPuzzle) AP[I].move(‘N’);

((IntPuzzle)AP[I]).move(‘N’); }

else ((ArrayPuzzle)AP[I]).move(‘N’);

}

}

Super-interfaces

• Suppose you want to extend the specification of an
interface to include more methods.
– IPuzzle: scramble, move, tile
– ImprovedPuzzle: scramble, move, tile, SamLoyd

• Two approaches to writing down extended
interface:
– Start from scratch and write an interface
– Extend the IPuzzle interface

11

Extending interfaces
interface IPuzzle{

void scramble();
int tile(int r, int c);
boolean move(char d);

}
interface ImprovedPuzzle extends IPuzzle{
void SamLoyd();
}

•IPuzzle is a super-interface of ImprovedPuzzle
interface.
•ImprovedPuzzle interface is a sub-interface of
IPuzzle.
•ImprovedPuzzle can be used as a type for variables
like any other interface.
•It is a sub-type of IPuzzle type.

Super-interfaces

• Interface can extend multiple super-
interfaces.

• Class that implements an interface must
implement all methods declared in super-
interfaces.

Type Hierarchy

IPuzzle IRan IRaq

AClass BClass

Interfaces:

Classes:

ImprovedPuzzle

class AClass implements ImprovedPuzzle, IRan {
……}

//There is no need to specify explicitly that AClass implements
//interface IPuzzle.

• Suppose class C implements a sub-interface
IB. There is no need to declare super-
interfaces of IB in the “implements” clause
of class C.

• Rules for up-casting and down-casting
references stay the same as before.

12

Editorial comments

• Interfaces have two main uses:
– Software engineering:

• Good fences make good neighbors.
– Sub-typing:

• Type of interface is super-type of type of class implementing that
interface.

• Use sub-types to write more generic, polymorphic code.
• Sub-typing is a central idea in programming

languages.
– Inheritance gives another method for creating sub-types.

• Sub-typing is sometimes referred to informally as
is-a relationship.
– (eg) Every Female is-a Human.

• Up-casting: super-type name on lhs of assignment
– Example: Sandy = Laura;
– Used in writing polymorphic methods and for declaring data

structures that can hold heterogenous data
– Up-casting is always legal.

• Down-casting: sub-type name on lhs of assignment
– Explicit cast required in Java.
– Example: Laura = (Female) Sandy;
– May or may not be legal:

• Compile-time check: Is type of lhs reference a sub-type of rhs
reference? (eg. Is Female a sub-type of Human?)

– Runtime check inserted: may throw exception
• Type of object on rhs may not be a sub-type of type of lhs reference.

Human Sandy = new Female();
Male George = (Male) Sandy;//class cast exception

– Less common than up-casting

• Dynamic method binding
– Method call r.m(..,..,..);
– Remember that type of reference r may be different

from type of object pointed to by r.
– Compile-time check: does type of reference r have a

method named m with appropriate parameter types?
– Run-time: look inside object named by r and invoke

method named m with the appropriate type signature.
• Sub-typing and dynamic method binding permit

you to write polymorphic/generic methods to
avoid duplicating code for each type.

