
1

Inheritance

What is inheritance?

• OO-programming = Encapsulation + Extensibility
• Encapsulation: permits code to be used without knowing

implementation details
• Extensibility: permit the behavior of classes to be

extended incrementally w/o involving class implementor
– (eg) to upgrade radio in car, we do not send it back to the

manufacturer
• Mechanism for extensibility in OO-programming:

inheritance
• Inheritance promotes code reuse

– permits you to change the behavior of a class without having to
rewrite the code of the class

Running Example: puzzle

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char c);

}

class Puzzle implements IPuzzle{
private int state;
public void scramble() {…}
public int tile(int r, int c){…}
public boolean move(char c){…}

}

New Requirement

• Suppose you are the client.
• After receiving puzzle code, you decide you want

the code to keep track of the number of moves
made since the last scramble operation.

• Implementation is simple:
– Keep a counter numMoves initialized to 0.
– move method invocation increments counter.
– scramble method invocation resets counter.
– New method: printNumMoves for printing value of

counter.

2

New Specification

We want the code to implement a new interface:

interface IEPuzzle extends IPuzzle{
void printNumMoves();

}

Implementing the new interface

• Three approaches:
– Call supplier, apologize profusely, and send

him new interface. Expensive.
– Throw away the supplier’s code and write it

yourself. Expensive.
– Use inheritance to define a new class that

extend the behavior of the supplier’s class.
Right!

Goal: to define a class EPuzzle

that implements the interface IEPuzzle

by extending the class Puzzle

that implemented the interface IPuzzle

Picture

• Can we tell Java that class EPuzzle is just like Puzzle
except that
– it has a new integer instance variable named numMoves
– it has a new instance method called printNumMoves
– it has modified versions of scramble and move methods?

state
scramble()
tile()
move()

Puzzle EPuzzle
state

scramble()
tile()

move()
numMoves

printNumMoves()

3

class EPuzzle extends Puzzle{

private int numMoves = 0;

public void scramble() {…}

public boolean move(char d){…}

public void printNumMoves(){…}

}

• Class EPuzzle is a sub-class of class Puzzle.
• Class Puzzle is a super-class of class EPuzzle.
• An EPuzzle object has

– its own instance variable numMoves and instance method
printNumMoves

– it overrides methods scramble and move in class Puzzle
– it inherits instance variable state and method tile from class Puzzle

Note on overriding

• A method declaration m in sub-class B can
override a method m in super-class A only
if both methods have
– the same name,
– both are class methods or both are instance

methods, and
– both have the same number and type of

parameters

Class Hierarchy

Object

Puzzle Array

EPuzzleSubclass of Puzzle

Superclass of EPuzzle

Direct superclass of EPuzzle

Every class other than Object has a unique direct superclass
that is called the parent class of that class.

…….

Single inheritance
• In Java, every class is implicitly a sub-class of

Object.
• A class can extend exactly one other class.

– class Puzzle{…}
• This class implicitly extends Object.

– class EPuzzle extends Puzzle{…}
• This class explicitly extends Puzzle, and implicitly extends

Object since Puzzle is a sub-class of Object.

• Class hierarchy in Java is a tree.
• C++: a class can be a direct sub-class of more than

one super-class.
– Class hierarchy is a directed acyclic graph.

4

Writing EPuzzle Class

First, let us implement the new members of EPuzzle.

class EPuzzle extends Puzzle implements IEPuzzle{
private int numMoves = 0;

public void printNumMoves() {
System.out.println("Number of moves = " + numMoves);

}
…//other method definitions

}

scramble and move

• We can write the move method the same way.
• Problem: state was declared to be a private

variable in class Puzzle, so it is not accessible to
methods in class EPuzzle.

How should we write these methods?
One option: write them from scratch.

Class EPuzzle extends Puzzle implements IEPuzzle{
private int numMoves = 0;
….
public void scramble() {

state = “978654321”;
numMoves = 0;

}
}

Difficulty with private variables

• Variable state is declared private, so it is only
accessible to instance methods in class Puzzle.

• In an instance of class EPuzzle, the tile method
can access this variable because it is inherited
from the super-class.

• Scramble method defined in class Epuzzle does
not have access to state.

• Similarly, private methods in super-class are not
accessible to methods in sub-class.

Interesting point

• EPuzzle objects have an instance variable for state
because EPuzzle extends Puzzle.

• However, state is accessible only to methods inherited
from Puzzle (such as tile()) and not to methods written in
EPuzzle class (such as scramble()) because state was
declared to be private.

EPuzzle
state

scramble()
tile()

move()
numMoves

printNumMoves()

5

One solution: protected access

• New access specifier: protected
• A protected instance variable in class S can

be accessed by instance methods defined
either in class S or in a sub-class of S.

• A protected method in class S can be
invoked from an instance method defined
either in class S or in a sub-class of S.

Proper code for Puzzle class

class Puzzle implement IPuzzle{
protected int state;
public void scramble(){….}
…

}

state is now
accessible from
sub-classes

Code for EPuzzle

class EPuzzle extends Puzzle implements IEPuzzle{
protected int numMoves = 0;

public void printNumMoves(){
System.out.println("Number of moves = " + numMoves);

}
public void scramble() {

state = “978654321”; //OK since state is now inherited
numMoves = 0;

}
//similar code for move

}

Protected access
• Should all instance variables and methods be

declared protected?
• Need to think about extensibility: if you believe

that sub-classes will want access to a member, it
should be declared protected.

• Analogy:
– Which components of a car might a user want to

upgrade?
– What wires/sub-systems need to be exposed to make

the upgrade easy?
• Extending a class requires much more knowledge

of the class than is needed just to use it.

6

Another solution

• Suppose sub-class S overrides a method m in its
super-class.

• Methods in sub-class S can invoke overridden
method of super-class as

super.m()
• Caveats:

– cannot compose super many times as in super.super.m()
– static binding: super.m is resolved at compile-time, so

no object look-up at runtime

Puzzle: ..scramble..tile…move… EPuzzle:..printNumMoves..scramble...move

Program area

Stack Heap

state
scramble()

tile()
move()

numMoves
printNumMoves()

Static binding:Compiler resolves method in invocation
super.scramble() in EPuzzle method scramble to
scramble method in Puzzle class.

EPuzzle

Another definition of EPuzzle
class EPuzzle extends Puzzle implements IEPuzzle{

protected int numMoves = 0;
….
public void scramble() {

super.scramble();
numMoves = 0;

}
public boolean move(char d){

boolean p = super.move(d);
if (p) numMoves++;//legal move
return p;

}
}

For this solution, you do not need protected access to state.

Sub-typing
• Inheritance gives another mechanism in Java for

creating sub-types.
– other mechanism: implementing interfaces.

• If class B extends class A, B is a sub-type of A.
• Examples:

– Puzzle p = new EPuzzle();//up-casting
– EPuzzle e = (EPuzzle)p; //down-casting

• legal if type of reference p is Object, Puzzle, or EPuzzle
and if type of object referenced by p is EPuzzle.

7

Unexpected consequence
• Sub-class method m that overrides a super-class

method cannot have more restricted access than
the super-class method.
class A {
public int m(){…}

}
class B {
private int m(){…}

}
….
B subR = new B();
subR.m();//should be illegal
A supR = subR;//upcasting
supR.m();// protection is OK, and will invoke method in class B at

//runtime!

Java restriction

• If method m in sub-class B overrides a
method m in super-class A,
– method m in sub-class B must have the same or

less restricted access than method M declared
in super-class A

Interfaces and inheritance

• A class can
– implement many interfaces, but
– it can extend only one class.

Example

D

E F

G
I

A

B
C

interface C extends A,B{
…

}

class F extends D implements A{
…..}
class E extends D implements A,B{
….}

Interfaces Class hierarchy

8

Shadowing variables

• Like overriding but for variables rather methods
– Super-class: variable v of some type
– Sub-class: variable v perhaps of some other type
– Method in sub-class can access shadowed variable by

using super.v
• Variable references are resolved using static

binding, not dynamic binding.
– Variable reference r.v: type of r and not of the object

referred to by r determines which variable is accessed.
• Shadowing variables is usually bad practice and

we will not worry about it.

Constructors

• No overriding of constructors: each class
has its own constructor.

• Super-class constructor can be invoked
explicitly by sub-class constructor by
invoking super() with parameters as needed.

• Object initialization in the presence of
inheritance can be quite complex: see Java
manual.

Abstract class

• Abstract class has one or more methods that must be
overridden by a sub-class that can be instantiated.

abstract class Puzzle{
protected int state;
public void scramble(){state = 978654321;}
abstract public int tile(int r, int c);//no code
abstract public void move(char d);//no code

}

Abstract classes (contd)

• Abstract class is an incomplete spec.
– cannot be instantiated directly
– not all methods in abstract class need to be

abstract
– somewhere between interfaces and concrete

classes
– abstract classes are part of the class hierarchy

and usual sub-typing rules apply

9

Use of abstract class

• Variables/methods common to a bunch of related sub-
classes can be declared once in Dad and inherited by all
sub-classes.

• If sub-class C wants to do something differently, it can
override methods as needed.

A B C

abstract class Dad

OO-programming
• OO-programming:

– Encapsulation: classes and access control
– Inheritance: extending the behavior of classes without

rewriting them from scratch
• Key intellectual concepts:

– Dynamic storage allocation
– Access control: public/private/protected
– Sub-typing

• Procedural languages: C/Pascal/….
– Dynamic storage allocation is available (malloc)
– You can fake access control with proper discipline.
– Sub-typing: function pointers are unsafe way of faking

it.

