\\\

Key operations:

Implementing sequence structures

e put
o get

Question: How are puts and gets related?
=>
What order should we explore the nodes in the graph?

Popular graph search strategies:
1. heuristic graph search
2. oblivious graph search

e breadth-first graph search

e depth-first graph search

o

-~

Sequence Structures

4 N

Heuristic: pick configuration with greatest number of correctly placed tiles

B
[T (N T R NS O

Number in pink = “figure of merit” for configuration \

4)

Heuristic graph search

In many applications, we have some domain-specific information

that we can exploit to “guide” the graph search.

Example: for Puzzle, from all configurations in Sequence Structure,
pick the one that has

1. largest number of tiles in correct position, or
2. minimum sum of Manhattan distances of tiles from their
correct positions, or

These are heuristics.

N \

4)

Priority Queue

e Each item in Sequence Structure has an associated integer
value called its priority.

e Method get () should always return the entry with the largest
priority (in some designs, lowest priority).

e If there are multiple items with highest priority, return the one
that was put earliest.

In our example,

Priority of configuration = number of correctly placed tiles

How do we implement priority queues?

_ /

4 N

Caveat: This heuristic is good only when you are close to sorted
state....

How do we implement this heuristic graph search in our approach?

\ Breadth-first Search (given start node): gerontocracy J

Generation i = set of all nodes n such that shortest path from start to n
hasi edges

Generation 0: {A}
Generation 1: {B,H} ~_
Generation2: {C, [}~
Generation 3: {D,J}
Generation 4: { G}
Generation 5: { F}

Breadth-first search: explore :&@m mmmm@_ on by generation
K. LHF not BFS

/ v AHB,ICDJIGF K

v/ ABHCIDJGF

4)

Oblivious Graph Search
Sometimes, you may not have heuristics to guide your graph search.

Oblivious graph search: graph search strategy is dictated by
structure of graph and not by heuristics

Two most popular strategies:

e breadth-first graph search
e depth-first graph search

N /

\

How do we implement sequence structure for BFS?

One approach: use priority queue

e priority = generation number
e priority queue returns lowest priority entry

Another approach: use a sequence structure that obeys
First-in-First-out discipline

Queue: get returns item that was put earliest.

_

10

-~

Breadth-first search

]
= [B =

0,1,2...: these are generation numbers for configurations

Sequence structure returns configuration from oldest live generation.

\ Queue: First-in-first-out Sequence Structure

AHB,ICDJGF

head tail
N
Sequence structure: queue [qw er ty]
[A] [HB] BiE NEQ
:mo .uym_l [CJG]

Queues are simpler to implement than priority queues.
Queues are faster than priority queues.

_

=> We will design specia structures for queues rather than reuse priority queues.

\

12

-

is first-in-first-out (FIFO)

e requests for service: SP-2 jobs
e simulations of systems like bank teller machines, public
transportation etc. where service discipline is FIFO

e circuit simulations: devices are simulated in time order

~

Queues show up in many applications where the service discipline

head tail
@m\ put order bcﬁ
In the context of queues,
put is called enqueue
get is called dequeue
11

4 N

Another oblivious graph search strategy: use a stack

Node order given by sequence structure that is
last-in-first-out (LIFO) (aka stack as in stack of coins)

tail

ut
U/v

ead

-

A dfs order:

h
S
get

put order

In the context of stacks,
put is known as push

get is known as pop

_ /

14

4 N

Why use a BFS?

It is easy to show that BFS can determine the shortest path
(smallest number of moves) from scrambled configuration to sorted
configuration.

Remember: in general, there may be many paths from a node to
another node in the graph. Heuristic graph search may take the
long way home.

Why use heuristic graph search then?

- /

13

[A]->[HB]->[IB]->[JB] ->[B]->[C] >

D] -> [G]

>[F >] :

_

16

-

Example:

A stack is a LIFO sequence structure.

This graph search strategy is called depth-first graph search.

\

15

4 N 4)

Bridge classes: decoupling abstractions from implementations
SSAsSortedArray
<<interface>>
SearchStructure| -~
Implementing Sequence Structures | PoasSortedarray SortedAray
Using Sorted Arrays
<<interface>>
SequenceStructurg 4, StackAsArray
>
Concrete
QAsArray Implementation
Abstractions Bridge Classes
20

18

4 N 4 N

Another dfs order:

: Arrays are not very appropriate for our purpose because our data

structures grow and shrink.

[A]->[BH]->[CH]->[DH]->[GJH] ->[FJJIH] ->[JJIH] However, we will start with arrays to get a feel for search and
>[I JH] ->[HJH] ->[JH] ->[H] ->] sequence structure.

17 19

\ Using arrays to implement stacks

SP——

stack

stack

@o class StackAsArray at end of handout.

22

-~

Using Arrays to implement Sequence Structures

24

21

Implementing Queues using arrays

head:slot for item that arrived earliest
tail: empty slot for enqueue
size: number of elementsin Q

Use the array as a ”circular buffer”.

23

See code in class QAsArray.

26

-

Wrap-around: array is aring buffer!

Exercise: can you compute size from values of head and tail?

Check: does your expression <<moqu for empty Q?full Q7

4 N

Implementing queues using linked lists
Head of list: earliest entry
Tail of list: last entry
Complication: put and get work at opposite ends of the list.
One solution:
e perform gets from head of list
e to do a put, walk down the list till you get to the last cell, and
then update this cell to point to the cell you are inserting
e better solution: keep track of last ListCell in list
See class QAsList.
O(1) complexity for put and get.

_ /

28

4 N

Implementing stacks using linked lists
StackAsL ist

datal

pop

StackAsList

datal
[

See class StackAsList for an implementation.

O(1) complexity for put and get.

N \

27

Designing data structures for PriorityQ'’s

Keep PQ items as sorted list in decreasing order of priority

Entries with same priority are in FIFO order.

put: walk down list and insert into “right place”

get: extract from head of list

Code: look at SortedList class discussed earlier

O(n) put time, O(1) get time.

_

30

4 N

29

Best priority queue implementation: heap
put: O(log(n)) time
get: O(log(n)) time

- /

32

4)

Important special case of priority queues:
fixed number of priorities (say 0..p-1)

Example: heuristic search with # of out-of-place tiles = 0..9
Cool implementation of priority queue for this case:
1. Use an array of p Queues (one for each priority level)
2. Implement put by enqueuing into queue for the appropriate
priority
3. Implement get by searching for non-empty Queue with highest
priority elements, and dequeue from that Queue.

O(1) put time, O(p) get time where p is number of priority levels.

N \

31

4 N

Examples of heaps: ages of people in family tree
Parent is always older than children, but you can have an uncle
who is younger than you.

Salaries of people in organization: bosses make more than
subordinates, but a 2nd level manager in one sub-divison may make

more money than a 1st level manager in a different sub-division

o /

34

4 N

Heap
Tree in which
1. integer stored in nodes

2. integer stored in a node is > than integers stored in any of its
children

Not a heap

Easy to show this means integer at node is > than integer in any

descendant.

- /

33

@ N

My running example of heap: crime family

Entries are PQEelements containing a name and an integer =
number of murders committed by person (measure of his
ruthlessness)

Boss must be more ruthless than subordinates, so crime family is a
heap.

laFamilia..

\w‘v..oos Perignon”
88

“Don Pingali"

"Don Juan"
22
"Don DeL ouise" g — \NJJ,V “Joe Schmoe"

"Don of the living dead" "Don Giovanni"

Heap of Priority Queue Elements

- \

36

4)

Degenerate case of heap: long and skinny tree (list!)

Hesp Skinny heap

35

\

Let us lock at get first.

Element to extract is in root of tree (why?).
Removing that element leaves a ”hole” in the root.
How should we fill that hole?

One solution:

move maximum of children of root to root.

(in our example, "Don Pingali” is moved into root)

("Don of the Living Dead”) and move him into "Don Pingali
Keep moving elements up till you move a leaf element up.
Remove empty leaf.

_

Problem: this creates a hole where ”Don Pingali” used to be.

)

Apply same idea again: find maximum of children of "Don Pingali”

s slot

/

38

-~

Can we implement a priority queue using a heap?
Question: how do we get and put?

Get: extract the element with largest priority

~

Put: insert element into data structure and preserve heap property

Put into a heap

Uriah .
m "Don Perignon”

hEC
"Don Juan" A|jmm . 0 H\Bmuﬁv__oozmzmm:__

"Don Del ouise" 1) p N n " Joe Schmoe"
N “_.m J N

- #
"Don of theliving dead” 7"
<

- stick new element into a new leaf node anywherein tree
- result is not necessarily a heap
- compare parent of new |eaf and new leaf and exchange if necessary
(in our example, we would exchange "Red Don" and "Don of the living dead"
since "Red Don" is more ruthless)

“ \ﬁv "Don Giovanni"
12

- if no exchange was needed, we are done : we have a heap
- otherwise, let p be the parent of the leaf node. We now have to compare
p and parent(p) to seeif heap condition is violated.

- if so, exchange, etc.
- this process has to terminate at the root of the tree at the worst.

40

37

laFamilia-. ss) &o: anen
"Don Juan" / - N . .
22 KMT Don Pingali

; " Joe Schmoe'

"Don Del ouise")
Twur (O

“Don of the living dead” \T 16

\ﬁv "Don Giovanni"
12

Heapifying after removing root element

39

_ /

42

4 N

Advantage of heap
We can implement priority queues using either linked lists or heaps.

Advantage of heap: if tree is not long and skinny, each put and get
needs to lock only at a small number of elements in the priority
queue at any time

Problem with our heap design: there is no guarantee that we will
not end up with long and skinny heap (list), so in the worst case,
our implementation will not be any more efficient than the list
implementation from assignment 5.

More advanced design to ensure tree is fat and short:
ensure heap is a complete binary tree

- /

41

-

Get operation that maintains complete tree-ness
Uriah

, filled node

empty node

- get algorithm that ensures complete tree-ness:

- extract element from root of tree and return it
- in old algorithm for get, we would promote max of nodes 2 and 3
to root, and keep going recursively down the tree. However, this
may create a"hole" in some position like 8 or 9 ultimately, and we
lose complete tree-ness
- clever way to fill root: promote element from "last” filled node
(in our example, node 12) to root
- this may violate heap property, so heapify by comparing new root element
with elementsin 2 and 3, and exchanging root with largest of its children etc.
(intuitively, if new root element isaloser, he sinks down the treettill
he needs to sink no more)

_

~

\

44

filled node

- empty node

#m\&\/‘/vm ‘
% \ @/\ 10, \“_.“_./ Hm\

S ~

- "complete binary tree": if node n is occupied, al nodes numbered
less than n are also occupied

- if we can maintain a heap as a complete binary tree, tree will be
short and bushy. Can we design put and get to "complete binary tree"
property is maintained after operation?

- Put: insert new element into "first" empty node (in example, node 13), rather
than into any random new leaf node as before, and heapify up the path from
this new node to root.

Problem: how do we know where in tree to create the new node (node 13
in example)? Easy: keep track of size of heap (in example, sizeis 12).
/ Put will make size = 13, and 13is 1101, so path to new leaf isRLR.

~

\

43

4)

Summary of priority queue implementation using heaps

e Use a heap that is a complete binary tree to store PQ elements.
Keep track of size of PQ.

e Get: return the root element. Promote the “last” element of
the complete binary tree to the root position and walk down
the tree restoring heap property. Accessing last position: use
binary representation of integer size. O(log(n)) time.

e Put: insert into “last +1” element of complete binary tree,
heapifying as you walk down the tree. O(log(n)) time.

See class Heap for code.

_ /

46

\ Example of get operation that maintains complete tree-ness /

(1) extract root
(2) promote"last" element into root

(3) exchange 8 and 22
(4) exchange 8 and 14

final heap: complete tree once again

