Minimal Spanning Trees

Spanning Tree

* Assume you have an undirected graph
G=(V,E)

* Spanning tree of graph G is tree
T=(V.E;SE,R)
— Tree has same set of nodes
— All tree edges are graph edges
— Root of tree is R

Spanning trees

Breadth-first Spanning Tree Depth-first spanning tree

Property 1 of spanning trees

Graph: G = (V,E)

Spanning tree: T = (V,E(,R)

Edge: ¢ =(u,v)in Gbutnotin T

There is a simple cycle containing only edge ¢ and edges in
spanning tree.

Proof: if u is ancestor of v, result is easy. Otherwise, let 1
be the first node in common to paths from u to root of tree,
and from v to root of tree. The paths u>v, v>11>u can
be concatenated to form the desired cycle.

A B edge (LH):
lis node G
simple cycle is (LH,G,I)

F C edge (H,C):

1is node A
simple cycle is (H,C,B,A,G,H)




Property 2 of spanning trees

Graph: G = (V,E)

Spanning tree: T = (V,E,R)

Edge: ¢ =(u,v) in G butnotin T

There is a simple cycle Y containing only edge ¢ and edges

in spanning tree. Moreover, inserting edge ¢ into T and
deleting any edge (s>t) in Y gives another spanning tree
T.

A B edge (H,C):
simple cycle is (H,C,B,A,G,H)
adding (H,C) to T and deleting (A,B)
C gives another spanning tree

Proof of Property 2

* In T’, every node is reachable from every
other node.

— Otherwise, assume node a is not reachable from
node b in T’. In T, there must be a path from b
to a that contains edge (s=>t). In this path,
replace edge (s=>t) by the path in T” obtained
by deleting (s=>t) from cycle Y, which gives a
path from b to a.

Proof of Property 2 (contd.)

e In T, there is a unique simple path between any
two nodes.

— Otherwise, suppose pl = (x>y) and p2 = (x>y) are
two distinct, edge-disjoint simple paths in T".

— The edge (u>v) occurs on at least one of these paths.
Concatenating pl and p2, and deleting edge (u>v)
gives a path pl in T’ from u to v. This path does not
contain (s>t), so it must be present in T as well. But T
also contains another simple path p2 from u to v
obtained by taking cycle Y and deleting (u=>v) from it;
this is distinct from p1 because it does contain (s>t).

— This is a contradiction.

¢ Therefore, T is a tree.

Building BFS/DFS spanning
trees

» Use sequence structure as
before, but put/get edges,
not nodes

— Get edge (s,d) from structure
— If d is not in done set,

 add d to done set

* (s,d) is in spanning tree

« add out-edges (d,t) to seq
structure if t is not in done set

» Example: BFS Queue
[(dummy,A)]
[(A,B),(A,G),(A,F)]
[(A,G),(AF),(B,G),(B,C)].....




Weighted Spanning Trees

* Assume you have an undirected graph
G = (V.E) with weights on each edge
» Spanning tree of graph G is tree
T=(V,E;CE)
— Tree has same set of nodes
— All tree edges are graph edges
— Weight of spanning tree = sum of tree edge weights
* Minimal Spanning Tree (MST)
— Any spanning tree whose weight is minimal
— In general, a graph has several MST’s
— Applications: circuit-board routing etc.

Graph SSSP tree

C  Minimal spanning tree

Caution: in general, SSSP tree
1s not MST

* Intuition:
— SSSP: fixed start node

4 4 — MST: at any point in
construction, we have a
1 bunch of nodes that we
have reached, and we look
at the shortest distance
from any one of those
nodes to a new node

SSSP Tree MSP

Property 3 of spanning trees

Edge(G>H): 5

Cycle edges: (G2>1), I2E),
(E->D),(H>D) all have weights
less than (G>H)

Graph: G = (V,E)

Spanning tree: T = (V,E[,R)

Edge: ¢ = (u,v) in G butnotin T

There is a simple cycle Y containing only edge ¢ and edges
in spanning tree. Moreover, weight(u—=>v) must be greater
than or equal to weight of any edge in this cycle.

Proof: Otherwise, modifying T by adding (u>v) and
dropping heavier edge on cycle gives spanning tree of less
weight




Prim’s MST algorithm

Building Minimal Spanning

Trees Tree MST = empty tree;
. . . Lo Heap h = new Heap();
* Prim’s algorithm: simple variation of /fany node can be the root of the MST
Dijkstra’s SSSP algorithm h.put((dummyRoot - startNode), 0);
. , . L while (h is not empty) {
* Change Dijkstra’s algorithm so the priority get minimum priority bridge (t->f);
of bridge (f=>n) is length(f,n) rather than if (fis nogifted) {
. . add (t>f) to MST;//grow MST
minDistance(f) + length(f,n) make £ lifted node:

* Algorithm produces minimal spanning tree! for each edge (f>n)
if (n is not lifted)

h.put((f=>n), length(f,n));

., . . .
Steps of Prim’s algorithm Property of Prim’s algorithm
e At each step of the algorithm, we have a spanning
1 add (dummy->A)to MST tree for “lifted” nodes.
[((A>B),2), (A>G).5).,(A>F),9)] « This spanning tree grows by one new node and

edge at each iteration.
[((A>G),5),((A>F),9)] add (A>B) to MST

[(A>G),5).(A>F).9),
(B>G).6).(B=>C)4)]

[((A>G).5),(A>F).9).,(B>G),6)]

add (B>C) to MST
[(((A>G),5),(A>F),9),(B=>G),6),((C,H),5),
((C,D)2)]




Proof of correctness

Suppose the algorithm does not produce MST.

Each iteration adds one new node and edge to tree.
First iteration adds the root to tree, and at least that step
is “correct”.

— “Correct” means partial spanning tree built so far can be
extended to an MST.

Suppose first k steps were correct, and then algorithm
made the wrong choice.

Proof (contd.)

+ Consider simple cycle formed by adding (u>v) to M. Let

p be the lowest ancestor of v in M that is also in P, and let
q be p’s child in M that is also an ancestor of v. So (p=>q)
is a bridge edge at step (k+1) as is (u>v). Since our
algorithm chose (u>v) at step (k+1), weight(u=>v) is less
than or equal to weight(p=>q).

From Property (3), weight of (u=>v) must be greater than
or equal to weight(p—>q).

— Partial spanning tree P built by first k steps can be extended to \ u
an MST M ®
— Step (k+1) adds edge (u>v) to P, but resulting tree cannot be ®
extended to an MST
Partial spanning tree P Spanning tree M

Proof (contd.)

* Therefore, weight(p—>q) = weight(u>v).
 This means that the tree obtained by taking
M, deleting edge (p—~>q) and adding edge
(u—>v) is a minimal spanning tree as well,
contradicting the assumption that there was
no MST that contained the partial spanning

tree obtained after step (k+1).

¢ Therefore, our algorithm is correct.

Complexity of algorithm

Every edge is examines once and inserted
into PQ when one of its two end points is
first lifted.

Every edge is examined again when its
other end point is lifted.

Number of insertions and deletions into PQ
is [E| + 1

Complexity = O(|E|log(|E|))




Editorial notes

* Dijkstra’s algorithm and Prim’s algorithm are
examples of greedy algorithms:
— making optimal choice at each step of the algorithm
gives globally optimal solution
* In most problems, greedy algorithms do not yield
globally optimal solutions
— (eg) TSP
— (eg) greedy algorithm for puzzle graph search: at each
step, choose move that minimizes the number of tiles
that are out of position

« Problem: we can get stuck in “local” minima and never find
the global solution




