
1

Minimal Spanning Trees

Spanning Tree

• Assume you have an undirected graph
G = (V,E)

• Spanning tree of graph G is tree
T = (V,ET E, R)
– Tree has same set of nodes
– All tree edges are graph edges
– Root of tree is R

⊆

Spanning trees

A B

C

DE

F

G

HI

Breadth-first Spanning Tree

0
1

2
A B

C

DE

F

G

HI

1

2
3

4

5

6

7 8

9

Depth-first spanning tree

Property 1 of spanning trees
• Graph: G = (V,E)
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle containing only edge c and edges in

spanning tree.
• Proof: if u is ancestor of v, result is easy. Otherwise, let l

be the first node in common to paths from u to root of tree,
and from v to root of tree. The paths u v, v l,l u can
be concatenated to form the desired cycle.

A B

C

DE

F

G

HI

edge (I,H):
l is node G
simple cycle is (I,H,G,I)

edge (H,C):
l is node A
simple cycle is (H,C,B,A,G,H)

2

Property 2 of spanning trees

• Graph: G = (V,E)
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges

in spanning tree. Moreover, inserting edge c into T and
deleting any edge (s t) in Y gives another spanning tree
T’.

A B

C

DE

F

G

HI

edge (H,C):
simple cycle is (H,C,B,A,G,H)
adding (H,C) to T and deleting (A,B)
gives another spanning tree

Proof of Property 2

• In T’, every node is reachable from every
other node.
– Otherwise, assume node a is not reachable from

node b in T’. In T, there must be a path from b
to a that contains edge (s t). In this path,
replace edge (s t) by the path in T’ obtained
by deleting (s t) from cycle Y, which gives a
path from b to a.

Proof of Property 2 (contd.)
• In T’, there is a unique simple path between any

two nodes.
– Otherwise, suppose p1 = (x y) and p2 = (x y) are

two distinct, edge-disjoint simple paths in T’.
– The edge (u v) occurs on at least one of these paths.

Concatenating p1 and p2, and deleting edge (u v)
gives a path p1 in T’ from u to v. This path does not
contain (s t), so it must be present in T as well. But T
also contains another simple path p2 from u to v
obtained by taking cycle Y and deleting (u v) from it;
this is distinct from p1 because it does contain (s t).

– This is a contradiction.
• Therefore, T’ is a tree.

Building BFS/DFS spanning
trees

• Use sequence structure as
before, but put/get edges,
not nodes
– Get edge (s,d) from structure
– If d is not in done set,

• add d to done set
• (s,d) is in spanning tree
• add out-edges (d,t) to seq

structure if t is not in done set

• Example: BFS Queue

A B

C

DE

F

G

HI

0
1

2

[(dummy,A)]
[(A,B),(A,G),(A,F)]
[(A,G),(A,F),(B,G),(B,C)]…..

3

Weighted Spanning Trees
• Assume you have an undirected graph

G = (V,E) with weights on each edge
• Spanning tree of graph G is tree

T = (V,ET E)
– Tree has same set of nodes
– All tree edges are graph edges
– Weight of spanning tree = sum of tree edge weights

• Minimal Spanning Tree (MST)
– Any spanning tree whose weight is minimal
– In general, a graph has several MST’s
– Applications: circuit-board routing etc.

⊆

Example

A B

C

DE

F

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

A B

C

DE

F

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

A B

C

DE

F

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

3 3

3

1 1

1

Graph SSSP tree

Minimal spanning tree

Caution: in general, SSSP tree
is not MST

• Intuition:
– SSSP: fixed start node
– MST: at any point in

construction, we have a
bunch of nodes that we
have reached, and we look
at the shortest distance
from any one of those
nodes to a new node

4 4

1

4 4 4

1
SSSP Tree MSP

Property 3 of spanning trees

• Graph: G = (V,E)
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges

in spanning tree. Moreover, weight(u v) must be greater
than or equal to weight of any edge in this cycle.

• Proof: Otherwise, modifying T by adding (u v) and
dropping heavier edge on cycle gives spanning tree of less
weight.

C

DE

F

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

3 1

Edge(G H): 5
Cycle edges: (G I), (I E),
(E D),(H D) all have weights

less than (G H)

4

Building Minimal Spanning
Trees

• Prim’s algorithm: simple variation of
Dijkstra’s SSSP algorithm

• Change Dijkstra’s algorithm so the priority
of bridge (f n) is length(f,n) rather than
minDistance(f) + length(f,n)

• Algorithm produces minimal spanning tree!

Prim’s MST algorithm

Tree MST = empty tree;
Heap h = new Heap();
//any node can be the root of the MST
h.put((dummyRoot startNode), 0);
while (h is not empty) {

get minimum priority bridge (t f);
if (f is not lifted) {

add (t f) to MST;//grow MST
make f a lifted node;
for each edge (f n)

if (n is not lifted)
h.put((f n), length(f,n));

}
}

Steps of Prim’s algorithm
A B

C

DE

F
G

HI

2
4

2
1

6

9 5 6
2 5

4
51

3 1

[((dummy A), 0)]

[] add (dummy A) to MST
[((A B),2), ((A G),5),((A F),9)]

[((A G),5),((A F),9)] add (A B) to MST
[((A G),5),((A F),9),
((B G),6),((B C),4)]

[((A G),5),((A F),9),((B G),6)]
add (B C) to MST

[((A G),5),((A F),9),((B G),6),((C,H),5),
((C,D)2)]
………..

Property of Prim’s algorithm
• At each step of the algorithm, we have a spanning

tree for “lifted” nodes.
• This spanning tree grows by one new node and

edge at each iteration.

A B

C

DE

G

HI

2
4

2
1

6

9 5 6
2 5

4
51

3 1

5

Proof of correctness
• Suppose the algorithm does not produce MST.
• Each iteration adds one new node and edge to tree.
• First iteration adds the root to tree, and at least that step

is “correct”.
– “Correct” means partial spanning tree built so far can be

extended to an MST.
• Suppose first k steps were correct, and then algorithm

made the wrong choice.
– Partial spanning tree P built by first k steps can be extended to

an MST M
– Step (k+1) adds edge (u v) to P, but resulting tree cannot be

extended to an MST

Proof (contd.)
• Consider simple cycle formed by adding (u v) to M. Let

p be the lowest ancestor of v in M that is also in P, and let
q be p’s child in M that is also an ancestor of v. So (p q)
is a bridge edge at step (k+1) as is (u v). Since our
algorithm chose (u v) at step (k+1), weight(u v) is less
than or equal to weight(p q).

• From Property (3), weight of (u v) must be greater than
or equal to weight(p q).

u u

v

p

q

Partial spanning tree P Spanning tree M

Proof (contd.)

• Therefore, weight(p q) = weight(u v).
• This means that the tree obtained by taking

M, deleting edge (p q) and adding edge
(u v) is a minimal spanning tree as well,
contradicting the assumption that there was
no MST that contained the partial spanning
tree obtained after step (k+1).

• Therefore, our algorithm is correct.

Complexity of algorithm

• Every edge is examines once and inserted
into PQ when one of its two end points is
first lifted.

• Every edge is examined again when its
other end point is lifted.

• Number of insertions and deletions into PQ
is |E| + 1

• Complexity = O(|E|log(|E|))

6

Editorial notes

• Dijkstra’s algorithm and Prim’s algorithm are
examples of greedy algorithms:
– making optimal choice at each step of the algorithm

gives globally optimal solution
• In most problems, greedy algorithms do not yield

globally optimal solutions
– (eg) TSP
– (eg) greedy algorithm for puzzle graph search: at each

step, choose move that minimizes the number of tiles
that are out of position

• Problem: we can get stuck in “local” minima and never find
the global solution

