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Minimal Spanning Trees

Spanning Tree

• Assume you have an undirected graph                  
G = (V,E) 

• Spanning tree of graph G is tree                            
T = (V,ET E, R)
– Tree has same set of nodes
– All tree edges are graph edges
– Root of tree is R

⊆

Spanning trees
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Depth-first spanning tree

Property 1 of spanning trees 
• Graph: G = (V,E) 
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle containing only edge c and edges in 

spanning tree.
• Proof: if u is ancestor of v,  result is easy. Otherwise, let l 

be the first node in common to paths from u to root of tree, 
and from v to root of tree. The paths u v, v l,l u can 
be concatenated to form the desired cycle.
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edge (I,H):
l is node G
simple cycle is (I,H,G,I)

edge (H,C):
l is node A
simple cycle is (H,C,B,A,G,H)
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Property 2 of spanning trees 

• Graph: G = (V,E) 
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges 

in spanning tree.  Moreover, inserting edge c into T and 
deleting any edge (s t) in Y gives another spanning tree 
T’.

A B

C

DE

F

G

HI

edge (H,C):
simple cycle is (H,C,B,A,G,H)
adding (H,C) to T and deleting (A,B) 
gives another spanning tree

Proof of Property 2

• In T’, every node is reachable from every 
other node.
– Otherwise, assume node a is not reachable from 

node b in T’. In T, there must be a  path from b 
to a that contains edge (s t).  In this path, 
replace edge (s t) by the path in T’ obtained 
by deleting (s t) from cycle Y, which gives a 
path from b to a.

Proof of Property 2 (contd.)
• In T’, there is a unique simple path between any 

two nodes.
– Otherwise, suppose p1 = (x y) and  p2 = (x y) are 

two distinct, edge-disjoint simple paths in T’. 
– The edge (u v) occurs on at least one of these paths. 

Concatenating p1 and p2, and deleting edge (u v) 
gives a path p1 in T’ from u to v. This path does not 
contain (s t), so it must be present in T as well. But T 
also contains another simple path p2 from u to v 
obtained by taking cycle Y and deleting (u v) from it; 
this is distinct from p1 because it does contain (s t).

– This is a contradiction.
• Therefore, T’ is a tree.

Building BFS/DFS spanning 
trees

• Use sequence structure as 
before, but put/get edges, 
not nodes
– Get edge (s,d) from structure
– If d is not in done set, 

• add d to done set
• (s,d) is in spanning tree
• add out-edges (d,t) to seq

structure if t is not in done set

• Example: BFS Queue
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[(dummy,A)]
[(A,B),(A,G),(A,F)]
[(A,G),(A,F),(B,G),(B,C)]…..
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Weighted Spanning Trees
• Assume you have an undirected graph                  

G = (V,E) with weights on each edge
• Spanning tree of graph G is tree                            

T = (V,ET E)
– Tree has same set of nodes
– All tree edges are graph edges
– Weight of spanning tree = sum of tree edge weights

• Minimal Spanning Tree (MST)
– Any spanning tree whose weight is minimal
– In general, a graph has several MST’s
– Applications: circuit-board routing etc.
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Graph SSSP tree

Minimal spanning tree

Caution: in general, SSSP tree     
is not MST

• Intuition:
– SSSP: fixed start node 
– MST: at any point in 

construction,  we have a 
bunch of nodes that we 
have reached, and we look 
at the shortest distance 
from any one of those 
nodes to a new node
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Property 3 of spanning trees

• Graph: G = (V,E) 
• Spanning tree: T = (V,ET,R)
• Edge: c = (u,v) in G but not in T
• There is a simple cycle Y containing only edge c and edges 

in spanning tree.  Moreover, weight(u v) must be greater 
than or equal to weight of any edge in this cycle.

• Proof: Otherwise, modifying T by adding (u v) and 
dropping heavier edge on cycle gives spanning tree of less 
weight.
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Edge(G H): 5
Cycle edges: (G I), (I E), 
(E D),(H D) all have weights 

less than (G H)
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Building Minimal Spanning 
Trees

• Prim’s algorithm: simple variation of 
Dijkstra’s SSSP algorithm 

• Change Dijkstra’s algorithm so the priority 
of bridge (f n) is length(f,n) rather than 
minDistance(f) + length(f,n)

• Algorithm produces minimal spanning tree!

Prim’s MST algorithm

Tree MST = empty tree;
Heap h = new Heap();
//any node can be the root of the MST
h.put((dummyRoot startNode), 0);
while (h is not empty)  {

get minimum priority bridge (t f);
if (f is not lifted) {

add (t f) to MST;//grow MST
make f a lifted node;
for each edge (f n) 

if (n is not lifted) 
h.put((f n), length(f,n));

}
}

Steps of Prim’s algorithm
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[((dummy A), 0)]  

[]   add (dummy A) to MST
[((A B),2), ((A G),5),((A F),9)]

[((A G),5),((A F),9)] add (A B) to MST
[((A G),5),((A F),9), 
((B G),6),((B C),4)] 

[((A G),5),((A F),9),((B G),6)]            
add (B C) to MST

[((A G),5),((A F),9),((B G),6),((C,H),5), 
((C,D)2)]
………..

Property of Prim’s algorithm
• At each step of the algorithm, we have a spanning 

tree for “lifted” nodes.
• This spanning tree grows by one new node and 

edge at each iteration.
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Proof of correctness
• Suppose the algorithm does not produce MST.
• Each iteration adds one new node and edge to tree. 
• First iteration adds the root to tree, and at least that step 

is “correct”.
– “Correct” means partial spanning tree built so far can be 

extended to an MST. 
• Suppose first k steps were correct, and then algorithm 

made the wrong choice.
– Partial spanning tree P built by first k steps can be extended to 

an MST M
– Step (k+1) adds edge (u v) to P, but resulting tree cannot be 

extended to an MST

Proof (contd.)
• Consider simple cycle formed by adding (u v) to M. Let 

p be the lowest ancestor of v in M that is also in P, and let 
q be p’s child in M that is also an ancestor of v. So (p q) 
is a bridge edge at step (k+1) as is (u v).  Since our 
algorithm chose (u v) at step (k+1), weight(u v) is less 
than or equal to weight(p q).

• From Property (3), weight of (u v) must be greater than 
or equal to weight(p q). 

u u

v

p

q

Partial spanning tree P Spanning tree M

Proof (contd.)

• Therefore, weight(p q) = weight(u v).
• This means that the tree obtained by taking 

M, deleting edge (p q) and adding edge 
(u v) is a minimal spanning tree as well, 
contradicting the assumption that there was 
no MST that contained the partial spanning 
tree obtained after step (k+1).

• Therefore, our algorithm is correct.

Complexity of algorithm

• Every edge is examines once and inserted 
into PQ when one of its two end points is 
first lifted.

• Every edge is examined again when its 
other end point is lifted.

• Number of insertions and deletions into PQ 
is |E| + 1

• Complexity = O(|E|log(|E|))



6

Editorial notes

• Dijkstra’s algorithm and Prim’s algorithm are 
examples of greedy algorithms:
– making optimal choice at each step of the algorithm 

gives globally optimal solution
• In most problems, greedy algorithms do not yield 

globally optimal solutions
– (eg) TSP
– (eg) greedy algorithm for puzzle graph search: at each 

step, choose move that minimizes the number of tiles 
that are out of position

• Problem: we can get stuck in “local” minima and never find 
the global solution


