
CS211
GUIS: DYNAMICS

❒ Announcements

• The Supplement in consulting office

• The Tutorial:

- http://java.sun.com/docs/books/tutorial/uiswing/
overview/event.html

- http://java.sun.com/docs/books/tutorial/uiswing/
events/index.html

• Prelim 2 coming up 11/18!

❒ Overview

• statics reminder

• dynamics overview

• events

• event sources

• event listeners

• event handlers

1. Introduction

1.1 Statics Reminder

• statics:

- choose top-level container

- obtain it’s content pane

- choose layout manager

- put components into content pane

- maybe components into other components

• dynamics?

- want GUI to act/receive actions

- user interacts with statics

1.2 Overview of Classes

• Helper classes: AWT classes Graphics, Color,
Font, FontMetrics, Dimension

• Components: what you see on the screen

• Containers: special kind of components that contain
other components

• Layout managers: objects that control placement and
sizing of components

• Events: an object that represents an occurrence

• Listeners:  an object that listens for an event
1.3 Overview of Design

• figure out what components will interact with user:

- user interaction on “live” components creates events

- objects must be created to handle the events

• “live” components need to know about the objects that
will handle their events

• objects that handle the events must have certain methods
that “know” what to do for a particular event

• things to look for:

- events

- event sources

- event listeners

- registration of event listeners on event sources

- event handlers implemented by event listeners

• overview in Counter3 example

// Counter3 example:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Counter3 extends JFrame {

private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel(generateLabel());
private Container c = getContentPane();

public static void main(String[] args) {
Counter3 f = new Counter3();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);

}

public Counter3() {
c.setLayout(new FlowLayout(FlowLayout.LEFT) );
c.add(b);
c.add(label);
b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
count++;
label.setText(generateLabel());

}
} );

}

private String generateLabel() {
return "Count: "+count;

}
}
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2. Events

2.1 User Interaction

• users like to do thing

• so, some objects allow user interaction

• depending on an action, the program might do different
things (and thus becomes event driven)

• event object (or, event):

- signal to program that an action has occurred

- the action causes an object to be internally created

• examples: mouse clicked, button pushed, menu selected

2.2 API

• classes for event objects:

- event object ancestor: java.util.EventObject

- most events you need are in java.awt.event

- some events are in javax.swing.event

• common events:
EventObject java.util

AWTEvent java.awt
ActionEvent java.awt.event
ComponentEvent java.awt.event

InputEvent java.awt.event
MouseEvent java.awt.event
KeyEvent java.awt.event

• want more? see java.awt.event in API

3. Event Source/Source Object

3.1 Generating an Event

• user interacts with a component

• the component generates the event (an object)

• So…event source (also, source object):

- the object on which the user generates an event

- usually components, but could be other objects

3.2 Common Sources and Their Sources

• Where are sources and their events?

- http://java.sun.com/docs/books/tutorial/uiswing/
components/componentlist.html

- http://java.sun.com/docs/books/tutorial/uiswing/
components/components.html

User Action Source Object Event Object

click button JButton ActionEvent

change text JTextComponent TextEvent

select menu item JMenuItem ActionEvent
3.3 Notes from Liang

• Swing components tend to fire AWT events

• if component can generate event, its subclasses can, too

3.4 Accessing Event Information

• event objects have members to help identify types of
events and their source objects

• from API… inherited from EventObject:
Object getSource(): return the object on which
the Event initially occurred.

• example)

- Scenario: user could press multiple buttons:
public void actionPerformed(ActionEvent e) {

if (e.getSource()==Button1)
{ /* ... */ }

else if (e.getSource()==Button2)
{ /* ... */ }

// and so on

- could also use inner classes (see later)

4. Event Listener/Listener Object

4.1 Delegation Model

• user acts on source object, which generates an event
object

• we need another object to act on the generated event

• why? causing an event means the user wants something
to happen

• event listener (or listener object or just listener):

- object that can “hear” (receive) an event object

- designed to perform actions based on events

User Event Listener
Object ObjectAction

Source
Object

trigger
event

create
event

notify
listener
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4.2 Design

• questions:

- how to create a listener object?

- how does listener object “know” to listen to a
particular event object?

- how does a listener react to an event object?

• process:

- choose a class to implement a listener interface

- the listener object must implement the interface’s
event handling method(s)

- register listeners to source objects by adding the
listeners to components’ lists of listeners

• quick reminder:

- see Counter3 example on Page 4

- source object? listener? registration? handler?
b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
count++;
label.setText(generateLabel());

}
} );

4.3 Listener Object Types

• identify a class to implement a listener interface:

- e.g.: for ActionEvent, use ActionListener

- pattern: for TypeEvent, use TypeListener
(except MouseMotionListener)

• API:

- java.util.EventListener

- java.awt.event

- javax.swing.event

• Tutorial:

- http://java.sun.com/docs/books/tutorial/uiswing/
events/eventsandcomponents.html

- http://java.sun.com/docs/books/tutorial/uiswing/
events/api.html

• can have multiple listeners in a GUI
(discussed later)
4.4 Implementing Listener Interface

• choose an object to be a listener…typical choices:

- top-level container that contains whole GUI

- inner classes to create specific listeners “on the spot”

- examples)
public class MyGUI extends JFrame implements ActionListener

private class LabelMaker implements ActionListener

• must implement methods from listener interface:

- reminder: listener object must act on events

- listener interfaces are designed to supply these actions
with handlers

4.5 Handlers

• handler: event-handling method

- must see API for particular methods

- example) ActionListener →
actionPerformed(ActionEvent e)

• how to know which source object that e refers to?

- reminder: EventObject has method
getSource(), which returns source object

- compare e.getSource() with a component in
your GUI

4.6 Registering Listeners

• must “connect” listener objects to source objects

- why? generated event must be “heard”

- how? register listener objects by adding them to a list
a of listeners for a particular source object

• design:

- identify which components will fire events

- write a registration method for the component

- syntax:
component.addTypeListener(Listener)

- examples)

b.addActionListener(this)
b.addActionListener(new ActionListener() { /*stuff*/} );

• source object could notify many listeners

• multiple source objects can share same listener

• a reminder of the full process:

- source object registers added listeners

- user acts on source object, which generates event

- source object notifies its listeners and activates the
listeners’ handlers (for multiple listeners, source
registers in queue)
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5. Basic Examples

5.1 GUI Class As Listener

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Counter1 {

public static void main(String[] args) { new MyGUI1(); }
}
class MyGUI1 extends JFrame implements ActionListener {

private int count;
private Container c;
private JButton b;
private JLabel l;

public MyGUI1() {
setGUI();
setLayout();
registerListeners();

}
private void setGUI() {

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(200,100);
setVisible(true);

}
private void setLayout() {

c = getContentPane();
c.setLayout(new FlowLayout(FlowLayout.LEFT));
b = new JButton("Push Me!");
c.add(b);
l = new JLabel(generateLabel());
c.add(l);

}
private void registerListeners() {

b.addActionListener(this);
}
public void actionPerformed(ActionEvent e) {

count++;
l.setText(generateLabel());

}
private String generateLabel() {

return "Count: "+count;
}

}

5.2 Nested Class

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Counter2 extends JFrame {

private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel(generateLabel());
private Container c = getContentPane();

public static void main(String[] args) {
Counter2 f = new Counter2();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);

}

public Counter2() {
c.setLayout( new FlowLayout(FlowLayout.LEFT) );
c.add(b);
c.add(label);
b.addActionListener(new LabelMaker());

}

private String generateLabel() {
return "Count: "+count;

}

private class LabelMaker implements ActionListener {
public void actionPerformed(ActionEvent e) {

count++;
label.setText(generateLabel());

}
}

}

5.3 Anonymous Class

// Counter3 example:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Counter3 extends JFrame {

private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel(generateLabel());
private Container c = getContentPane();

public static void main(String[] args) {
Counter3 f = new Counter3();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);

}

public Counter3() {
c.setLayout(new FlowLayout(FlowLayout.LEFT) );
c.add(b);
c.add(label);
b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
count++;
label.setText(generateLabel());

}
} );

}

private String generateLabel() {
return "Count: "+count;

}
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