
COM S 211/ENGRD 211 May 15, 2003
Final Exam Solutions 3:00 PM – 5:30 PM

SOLUTIONS



CS211 Spring 2003 Final Exam Solutions 3
Problem 1 [10 points] General Concepts

Answer the following questions. Be concise and clear. You may use figures in your explanations.

1a [1 point] What are the three fundamental principles of object oriented programming?

encapsulation, inhertiance, polymorphism (no partial credit)

1b [1 point] What is an abstract data type?

set of data and its associated operations

1c [1 point] Fill in the blank: A data structure is an implementation of an ADT.
Hint: The word we want begins with the letter “i”.

1d [1 point] What is a search structure?

data structure designed for efficient searching

1e [1 point] What is a sequence structure?

data structure designed for efficient storage and retrieval

1f [1 point] Why does a sequence structure usually make a poor search structure? Explain your answer in terms of a
sequence structure’s put and get operations.

put and get do not usually place data in a sorted fashion

1g [2 points] Explain why the worst-case asymptotic time complexity for the contains method in a binary search tree
is .

the BST could be unbalanced – effectively, a linked list

1h [2 points] Is it true that our notions of Big-Oh and asymptotic complexity are valid for all mathematical functions? You
must explain your answer for full credit. You may give examples to support your answer.

no, false
functions must be postive and increasing – if not, time/space needed would shrink as input data
becomes larger

O n( )



CS211 Spring 2003 Final Exam Solutions 4
Problem 2 [10 points] Asymptotic Complexity

For Problems 2a and 2b, determine whether or not each of the following relationships is true. If the relationship is true,
provide a witness pair to justify your answer. If the relationship is false, justify your answer.

2a [4 points]

true

Note that .

To satisfy , chooise  and .

LHS:

RHS:

, so we’re OK

2b [6 points]

false

To satisfy , is  for .

If the relation were true, , which is also , for .

To maintain ,  would have to be bounded below a certain value, which violates the need

for .

For example, if , , but since must hold, choosing a value of higher than

 causes a contradiction.

2
n 1+

O 2
n

( )=

2
n 1+

2 2
n×=

f n( ) cg n( )≤ c 2= n0 0=

2
n 1+

2
0 1+

2= =

2 2
n× 2 1× 2= =

LHS RHS≤

n
n

O 2
n

( )=

f n( ) cg n( )≤ n
n

c2
n≤ n n0≥

c
n

n

2
n

-----
 
 
 

≥ c
n
2
--- 

  n
≥ n n0≥

c
n
2
--- 

  n
≥ n

n n0≥

n0 2= c
2
2
--- 

  2
≥ 1= n n0≥ n

n0



CS211 Spring 2003 Final Exam Solutions 5
Problem 3 [20 points] Inner Classes, Iterators, Linked Lists

Background: The remove method of an iterator will remove the last item returned by next. For example, inside a loop that
iterates a collection’s elements, the next method might produce a “bad” value that a programmer might not want to be in the
collection. If so, calling the iterator’s remove method would remove that value.

Problem: Complete method main in class CleanCircle to use a remove method that you will implement in inner class
CircleIterator. In class CleanCircle, the user creates a doubly-linked circular list of a user-input length (from
args[0]) with a sentinel node. Each node in the list contains a random integer, 0 to 3, inclusive. The remove method will
delete a node that contains the value 0. For example, for the list 90210, class CleanCircle would produce and display
921. In the case of a list that contains all 0s, all non-sentinel nodes are removed and an empty string is displayed.

Specifications, Assumptions, and Hints:

• You must use the CircleIterator inner class provided in class Circle.
• Using the previous (prev) links in class Node will greatly assist your solution.

import java.util.*;
public class CleanCircle {

public static void main(String[] args) {

// Create list with sentinel as first node:
Circle c = new Circle(); // create Circle with sentinel
Node s = c.sentinel;     // set reference s to sentinel node

// Add nodes to list:
Node n = s; // current node
s.next = n; n.prev = s;
for ( int i = 1 ; i <= Integer.parseInt(args[0]) ; i++ ) {

Node tmp = new Node();
n.next = tmp; tmp.prev = n; n = tmp;

}
n.next = s; s.prev = n;

// Remove nodes with data of 0 from list, using CircleIterator’s remove():

// Display results:
System.out.println(c);

} // Method main

} // Class CleanCircle

Iterator i = c.new CircleIterator();
while( i.hasNext() ) {

Integer next = (Integer) i.next();
if (next.equals(new Integer(0)))

i.remove();
}



CS211 Spring 2003 Final Exam Solutions 6
class Node {
public Node next; // next node
public Node prev; // previous node
public Object data = new Integer(MyMath.randInt(0,3));
public String toString() { return ""+data; }

} // Class Node

class MyMath { /* code not shown */ }

class Circle {
public Node sentinel;

Circle() {
sentinel = new Node();
sentinel.next = sentinel;
sentinel.prev = sentinel;

}

public class CircleIterator implements Iterator {
private Node cursor; // current finger into list

public CircleIterator( ) { cursor = sentinel.next; }

public boolean hasNext( ) { return cursor != sentinel; }

public Object next( ) {
Object d = cursor.data;
cursor = cursor.next;
return d;

}

// Remove only a single node from list:
public void remove( ) {

}

} // Class CircleIterator

public String toString() { /* code not shown */ }

} // Class Circle

Node previous = cursor.prev.prev; // assuming at least 1 node
previous.next = cursor; // previous stays in place
cursor.prev = previous;



CS211 Spring 2003 Final Exam Solutions 7
Problem 4 [5 points] Code Analysis, Software Design

Answer the following problems using Problem 3. You must attempt Problem 3 to receive full credit on this problem.

4a [2 points] What is the asymptotic time complexity of the main method in terms of x, where x represents
Integer.parseInt(args[0])? Briefly explain how you determined your answer.

O(x)
The loop to build the list must go through x+1 elements.
The loop to delete 0s must go through x elements.

4b [1 point] What is the asymptotic time complexity of the remove method? Briefly explain how you determined your
answer.

O(1)
Only constant operations happen in the method.

4c [2 points] An interesting twist that we did not include is sorting of the list before removing the nodes with a 0. How
could you redesign the Circle class to make the removal process more efficient for time?

As you create the list, sort it such that the zeros appear first in the list.
Keep a finger that keeps track of the first non-zero element and make connect the sentinel to
that node.



CS211 Spring 2003 Final Exam Solutions 8
Problem 5 [20 points] Trees, Graphs

Background: Each node in a tree has a unique path. If a node may be reached via multiple paths, then the underlying data
structure is a graph but not a tree. See the figure below for examples of both cases.

Problem: Write a method isTree that returns true if a suspected tree is indeed a tree. Otherwise, isTree returns false
as in the case of a graph.

Specifications, Assumptions, and Hints:

• Refer to class TestTree for an example of how the classes and methods are used. Note that method main relies on a
specific implementation of isTree.

• You must use classes BinaryNode and BinaryTree.
• You may write helper methods inside class BinaryTree, but you may not use any fields other than root.
• You might find the API’s HashSet class, which is described on Page 2, very useful.

import java.util.*;

public class TestTree {
public static void main(String[] args) {

BinaryTree t = new BinaryTree();

/* build tree: code not shown */

System.out.println( t.isTree() );
}

} // Class TestTree

class BinaryNode {
    public BinaryNode left;
    public BinaryNode right;
    public Object data;
    public BinaryNode(Object d) { data=d; }
} // Class BinaryNode

[Problem 5 continued on next page]

Tree Graph



CS211 Spring 2003 Final Exam Solutions 9
class BinaryTree {

public BinaryNode root;

// Methods to check if each node can be reached by only one path:

} // Class BinaryTree

public boolean isTree() {
HashSet h = new HashSet();
if (root==null) return true;
h.add(root,null);
return isTree(root.left,h) && isTree(root.right,h);

}

public boolean isTree(BinaryNode n, HashSet h) {
if (n==null) return true;
if (h.contains(n)) return false;
h.add(n);
return isTree(n.left,h) && isTree(n.right,h);

}



CS211 Spring 2003 Final Exam Solutions 10
Problem 6 [25 points] Graphs, Graph Traversal

Background: You have been given a special kind of robot to model with Java. Our robot moves only in perpendicular
directions (north, south, east, and west) on a rectangular grid of spaces. Some spaces are open and some are blocked, but there
is always at least one path to every open space, starting from the origin (upper, left space), which is always open. Not only
must the robot stay in the grid, but the robot must stay in open spaces. The robot must visit every open space, starting at the
origin, without getting stuck in a cycle. For instance, in the following grid

the robot branches in two directions from the origin, but will indeed reach all open spaces.

Problem: You need to complete method displayBFS in class TestRobot to write code that determines a robot’s breadth-
first search (BFS) traversal of a grid. The grid is represented as a two-dimensional array of ints, where 0 indicates an open
space and anything else indicates a blocked space. Your BFS must handle any valid user-supplied grid, though we have given
one example in method main. Class TestRobot uses classes Robot and Grid, as well as various data structures that are
not shown.

Specifications, Assumptions, and Hints:

• Each instance of class Robot has a particular location in the grid. So, you need to create a new Robot object each time
you make a unique move, which is a move to a space that the robot has not already visited.

• We do not keep track of the actual path the robot takes. The output lists all the visited nodes in an arbitrary order as
determined by a search structure that stores the nodes. See the sample session for example output and variable bfs in
method displayBFS.

• Refer to Page 2 to help with the toDo and bfs data structures.

Sample Session:

The robot state is displayed as <rowcol>. For the given example, the program displays the following BFS:
[ <00> <10> <01> <20> <02> <21> <12> <13> <23> ]

public class TestRobot {

public static void main(String[] args) {
int[][] layout = new int[][] { {0,0,0,1}, {0,1,0,0}, {0,0,1,0} };
Grid grid = new Grid(layout);
Robot robot = new Robot(grid);
displayBFS(robot);

}

public static void displayBFS(Robot robot) {

SeqStructure toDo = new QueueAsList(); // queue for processing nodes
SearchStructure bfs = new BST(); // binary search tree for storing nodes

// Initialize graph with origin as initial location of robot:
toDo.put(robot);
bfs.insert(robot);

// continued on next page

origin
open

blocked



CS211 Spring 2003 Final Exam Solutions 11
// Process each node and save in bfs until run out of moves:
while(!toDo.isEmpty()) {

// Get current robot state, which is the current node:

Robot current = ______________________________ ;

// Explore nodes that emanate from current node.
// Generate each node by attempting to move robot in all directions.
// Check if each node is legal and unvisited.
// Update toDo and bfs if necessary:

String moves = "NSEW";

for (int i = 0; i < moves.length(); i++) {

Robot next = (Robot)toDo.get() ; // copy Robot state (node)

char m = moves.charAt(i); // choose a new direction

boolean OK = next.move(m) ; // attempt to move Robot

// Was the attempt to move OK? If so, we have a node to process.
// Must then check if node has not been visited.
// If so, update toDo and bfs:

} // end for

} // end while

// Display BFS nodes:

System.out.println(bfs);

} // Method displayBFS

} // Class TestRobot

// OK to move?
if (OK) {
// Process unvisited nodes:

if (!path.search(next)) {
toDo.put(next);
path.insert(next);

}
}



CS211 Spring 2003 Final Exam Solutions 12
class Robot implements Comparable {

// Represent Robot state:
public Grid grid;  // grid in which robot moves
public int row,col; // current coordinate in grid; starts at origin

// Create a new Robot which moves in grid:
public Robot(Grid g) { grid = g; }

// Attempt to move robot to open location in the direction m (N, S, E, or W).
// Return false if location is blocked or attempting to move outside grid;
// otherwise update the Robot state (row, col) and return true:

public boolean move(char m) { /* code not shown */ }

// Copy (clone) the current robot for use in generating new states:
public Robot duplicate() {

Robot r = new Robot(grid);
r.row=row; r.col=col;
return r;

}

// Stringify current robot state as current position in grid:
public String toString() { return "<"+row+""+col+">"; }

// Return true if two Robots have the same state; otherwise, return false:
public boolean equals(Object o) { /* code not shown */ }

// Provide way to compare to Robot states by checking if they are equal:
public int compareTo(Object o) { /* code not shown */ }

} // Class Robot

class Grid {
public int MINROW, MINCOL;
public int MAXROW, MAXCOL;
public int[][] grid;
public Grid(int[][] grid) {

this.grid=grid;
MINROW = MINCOL = 0;
MAXROW = grid.length-1;
MAXCOL = grid[0].length-1;

}
} // Class Grid



CS211 Spring 2003 Final Exam Solutions 13
Problem 7 [10 points] Graphs

Recall that a spanning tree is a subset of a graph that is composed of edges such that each node is visited without forming a
cycle. For this problem, you will use the following undirected weighted graph to generate different kinds of spanning trees:

7a [2 points] Should someone use an adjacency list or adjacency matrix to represent this graph? Justify your choice.

7b [2 points] Draw a breadth-first spanning tree rooted at A.

7c [2 points] Draw a depth-first spanning tree rooted at A.

7d [2 points] Draw a minimal spanning tree rooted at A.

7e [2 points] Draw a SSSP (single-source-shortest-path) tree rooted at A.

7a) adjaceny list: not enough edges (other answer is OK, too if the person thinks there are enough edges)

1

12

4 4
2 5

6

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

D E

7b 7c

7d 7e


	COM S 211/ENGRD 211 May 15, 2003
	Final Exam Solutions 3:00 PM - 5:30 PM

	Problem 1 [10 points] General Concepts
	1a [1 point] What are the three fundamental principles of object oriented programming?
	1b [1 point] What is an abstract data type?
	1c [1 point] Fill in the blank: A data structure is an implementation of an ADT. Hint: The word we want begins with the letter “i”.
	1d [1 point] What is a search structure?
	1e [1 point] What is a sequence structure?
	1f [1 point] Why does a sequence structure usually make a poor search structure? Explain your answer in terms of a sequence structure’s put and get operations.
	1g [2 points] Explain why the worst-case asymptotic time complexity for the contains method in a binary search tree is .
	1h [2 points] Is it true that our notions of Big-Oh and asymptotic complexity are valid for all mathematical functions? You must explain your answer for full credit. You may give examples to support your answer.

	Problem 2 [10 points] Asymptotic Complexity
	2a [4 points]
	2b [6 points]

	Problem 3 [20 points] Inner Classes, Iterators, Linked Lists
	Problem 4 [5 points] Code Analysis, Software Design
	4a [2 points] What is the asymptotic time complexity of the main method in terms of x, where x represents Integer.parseInt(args[0])? Briefly explain how you determined your answer.
	4b [1 point] What is the asymptotic time complexity of the remove method? Briefly explain how you determined your answer.
	4c [2 points] An interesting twist that we did not include is sorting of the list before removing the nodes with a 0. How could you redesign the Circle class to make the removal process more efficient for time?

	Problem 5 [20 points] Trees, Graphs
	Problem 6 [25 points] Graphs, Graph Traversal
	Problem 7 [10 points] Graphs
	7a [2 points] Should someone use an adjacency list or adjacency matrix to represent this graph? Justify your choice.
	7b [2 points] Draw a breadth-first spanning tree rooted at A.
	7c [2 points] Draw a depth-first spanning tree rooted at A.
	7d [2 points] Draw a minimal spanning tree rooted at A.
	7e [2 points] Draw a SSSP (single-source-shortest-path) tree rooted at A.


