Lecture 25: Algorithms for Sorting and Searching

CS 1110
Introduction to Computing Using Python
[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Announcements

- Labs 17 \& 18 due Friday \& Monday, respectively
- Next week's discussion sections \rightarrow office hours for A6 and Prelim 2
- Final Exam on May 21 ${ }^{\text {st }} 1: 30-4 \mathrm{pm}$. Your assigned exam session (in-person or online) will be given in CMS tomorrow. Submit a "regrade request" in CMS by May 12 if you have a legitimate reason for requesting a change

Algorithms for Search and Sort

- Well known algorithms
- focus on reviewing programming constructs (while loop) and analysis
- will not use built-in methods such as index, insert, sort, etc.
- Today we'll discuss
- Linear search
- Binary search
- Insertion sort
- More on sorting next lecture
- More on the topic in next course, CS 2110!

Searching in a List (Q)

- Search for a target x in a list v
- Start at index 0, keep checking until you find it or until no more element to check

x 14
Linear search

Suppose another list is twice as long as v. The expected "effort" required to do a linear search is
A. Squared
B. Doubled
C. The same
D. Halved
E. I don't know

Search Algorithms

- Search for a target x in a list v
- Start at index 0, keep checking until you find it or until no more elements to check

x 14
Linear search
- Search for a target x in a sorted list v
a sorted list should
a less work!

Binary search

How do you search for a word in a dictionary? (NOT linear search)

To find the word "tanto" in my Spanish dictionary...
while dictionary is longer than 1 page:
Open to the middle page
if first entry comes before "tanto":
Rip* and throw away the 1st half
else:
Rip* and throw away the $2^{\text {nd }}$ half

[^0]
Repeated halving of "search window"

Original:
After 1 halving: 1500 pages After 2 halvings: After 3 halvings:
After 4 halvings: After 5 halvings: :
After 12 halvings: 1 page

3000 pages

750 pages
375 pages
188 pages
94 pages

Binary Search

- Repeatedly halve the "search window"
- An item in a sorted list of length n can be located with just $\log _{2} n$ comparisons.
- "Savings" is significant!

n	$\log 2(\mathrm{n})$
100	7
1000	10
10000	13

Binary Search: target $x=70$

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

12	15	33	35	42	45	51	62	73	75	86	98

v [mid] is not x v [mid] < x
mid: 5
$j: 11$
So throw away the left
half...

Binary Search: target $x=70$

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

$$
\begin{gathered}
\mathrm{v}[\mathrm{mid}] \text { is not } \mathrm{x} \\
\mathrm{x}<\mathrm{v}[\mathrm{mid}]
\end{gathered}
$$

So throw away the right half...

Binary Search: target $x=70$

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

$$
\begin{aligned}
& \mathrm{v}[\mathrm{mid}] \text { is not } \mathrm{x} \\
& \mathrm{v}[\mathrm{mid}]<\mathrm{x}
\end{aligned}
$$

mid: 6

$$
j: 7
$$

Binary Search: target $x=70$

$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

mid: 7

$$
\begin{aligned}
& \mathrm{v}[\mathrm{mid}] \text { is not } \mathrm{x} \\
& \mathrm{v}[\mathrm{mid}]<\mathrm{x}
\end{aligned}
$$

So throw away the left half...

$$
j: 7
$$

Binary Search: target $x=70$

$$
\begin{aligned}
& \begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 12 & 15 & 33 & 35 & 42 & 45 & 51 & 62 & 73 & 75 & 86 & 98 \\
\hline
\end{array} \\
& \text { i: } 8 \\
& \text { mid: } 7 \\
& \text { DONE because } \\
& i \text { is greater than } j \\
& \rightarrow \text { Not a valid search window }
\end{aligned}
$$

Binary search is efficient, but we need to

 sort the vector in the first place so that we can use binary search- Many sorting algorithms out there...
- We look at insertion sort now
- Next lecture we'll look at merge sort and do some analysis

The Insertion Process

- Given a sorted list x , insert a number y such that the result is sorted
- Sorted: arranged in ascending (small to big) order

We'll call this process a "push down," as in push a value down until it is in its sorted position

Push Down

one push down

Push down 8 (b[4]) into the sorted segment b[0..3]

The notation b[h..k] means elements at indices h through \mathbf{k} of list b, i.e., including \mathbf{k}

Push Down

See push_down() in insertion_sort.py

Sort list b using Insertion Sort

Need to start with a sorted segment. How do you find one?

Length I segment is sorted
push_down(b, 1) Then sorted segment has length 2 push_down(b, 2) Then sorted segment has length 3 push_down(b, 3) Then sorted segment has length 4 push_down(b, 4) Then sorted segment has length 5 push_down(b,5) Then entire list is sorted

For a list of length n, call push_down $n-1$ times.

Helper functions make clear the algorithm

def $\operatorname{swap}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
def push_down(b, k):
while $k>0$ and $b[k-1]>b[k]:$
swap(b, k-1, k) $\mathrm{k}=\mathrm{k}-1$
def insertion_sort(b): for i in range(1,len(b)): push_down(b, i)

Difficult to understand!! def insertion_sort(b): for i in range(1,len(b)):
$\mathrm{k}=\mathrm{i}$
while ($k>0$ and

$$
b[k-1]>b[k]):
$$

temp $=\mathrm{b}[\mathrm{k}-1]$
$\mathrm{b}[\mathrm{k}-1]=\mathrm{b}[\mathrm{k}]$
$b[k]=$ temp

Algorithm Complexity

- Count the number of comparisons needed
- In the worst case, need i comparisons to push down an element in a sorted segment with i elements.

How much work is a push down?

This push down takes 2 comparisons
push down
a "small" value

2	3	1	6	9

2	1	3	6	9
1	2	3	6	9

This push down takes 4 comparisons.
Worst case scenario: n comparisons needed to push down into a length \boldsymbol{n} sorted segment.

Algorithm Complexity (Q)

def swap(b, h, k):
def push_down(b, k): while $k>0$ and $(b[k-1]>b[k])$ swap(b, k-1, k) $\mathrm{k}=\mathrm{k}-1$
def insertion_sort(b):
for i in range(1,len(b)):
push_down(b, i)

Count (approximately) the number of comparisons needed to sort a list of length n
A. ~ 1 comparison
B. $\sim \mathrm{n}$ comparisons
C. $\sim \mathrm{n}^{2}$ comparisons
D. $\sim n^{3}$ comparisons
E. I don't know

[^0]: * For dramatic effect only--don't actually rip your dictionary! Just pretend that the part is gone.

