
5/6/2021

1

Lecture 25:
Algorithms for Sorting and

Searching

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• Labs 17 & 18 due Friday & Monday, respectively

• Next week’s discussion sections → office hours for A6

and Prelim 2

• Final Exam on May 21st 1:30-4pm. Your assigned

exam session (in-person or online) will be given in

CMS tomorrow. Submit a “regrade request” in CMS

by May 12 if you have a legitimate reason for

requesting a change

2

Algorithms for Search and Sort

• Well known algorithms

▪ focus on reviewing programming constructs (while loop) and

analysis

▪ will not use built-in methods such as index, insert, sort, etc.

• Today we’ll discuss

▪ Linear search

▪ Binary search

▪ Insertion sort

• More on sorting next lecture

• More on the topic in next course, CS 2110!

3

Searching in a List (Q)

• Search for a target x in a

list v

• Start at index 0, keep

checking until you find it

or until no more element

to check

Suppose another list is twice as

long as v. The expected “effort”

required to do a linear search is

A. Squared

B. Doubled

C. The same

D. Halved

E. I don’t know

7

12 1535 33 42v

x 3514

Linear search

0 1 … k …

See search.py

Search Algorithms

• Search for a target x in a

list v

• Start at index 0, keep

checking until you find it

or until no more elements

to check

• Search for a target x in a

sorted list v

9

12 1535 33 42v

x 35

12 3515 33 42v

x 14
14

Linear search Binary search
10

How do you search for a word in a dictionary?

(NOT linear search)

To find the word “tanto” in my Spanish dictionary…

while dictionary is longer than 1 page:

Open to the middle page

if first entry comes before “tanto”:
entry: Rip* and throw away the 1st half

else:

Rip* and throw away the 2nd half

* For dramatic effect only--don’t actually rip your

dictionary! Just pretend that the part is gone.

http://www.cs.cornell.edu/courses/cs1110/2021sp

5/6/2021

2

11

Repeated halving of “search window”

Original: 3000 pages

After 1 halving: 1500 pages

After 2 halvings: 750 pages

After 3 halvings: 375 pages

After 4 halvings: 188 pages

After 5 halvings: 94 pages

:

After 12 halvings: 1 page

Binary Search

• Repeatedly halve the “search window”

• An item in a sorted list of length n can be located
with just log2 n comparisons.

• “Savings” is significant!

12

n log2(n)

100 7

1000 10

10000 13

13

12 15 3533 42 45 51 7362 75 86 98v

i:

mid:

j:

0

5

11

0 1 2 3 4 5 6 7 8 9 10 11

v[mid] is not x

v[mid] < x

So throw away the left
half…

Binary Search: target x = 70

14

12 15 3533 42 45 51 7362 75 86 98v

6

8

11

v[mid] is not x

x < v[mid]

So throw away the
right half…

i:

mid:

j:

0 1 2 3 4 5 6 7 8 9 10 11

Binary Search: target x = 70

15

12 15 3533 42 45 51 7362 75 86 98v

6

6

7

v[mid] is not x

v[mid] < x

So throw away the left
half…

i:

mid:

j:

0 1 2 3 4 5 6 7 8 9 10 11

Binary Search: target x = 70

16

12 15 3533 42 45 51 7362 75 86 98v

7

7

7

v[mid] is not x

v[mid] < x

So throw away the left half…

i:

mid:

j:

0 1 2 3 4 5 6 7 8 9 10 11

Binary Search: target x = 70

5/6/2021

3

17

12 15 3533 42 45 51 7362 75 86 98v

8

7

7

DONE because
i is greater than j

→ Not a valid search window

i:

mid:

j:

0 1 2 3 4 5 6 7 8 9 10 11

Binary Search: target x = 70

18

Binary search is efficient, but we need to

sort the vector in the first place so that we

can use binary search

• Many sorting algorithms out there...

• We look at insertion sort now

• Next lecture we’ll look at merge sort and do

some analysis

19

The Insertion Process

• Given a sorted list x, insert a number y such that

the result is sorted

• Sorted: arranged in ascending (small to big) order

2 3 6 98

2 3 6 9 8

sorted

We’ll call this process a “push down,” as in push a
value down until it is in its sorted position 20

2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Push Down sorted

one push
down

Push down 8 (b[4]) into the

sorted segment b[0..3]
b

b

10 2 3 4 The notation
b[h..k] means
elements at
indices h
through k of
list b, i.e.,
including k

26

4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:

DONE! No more swaps.

Push Down

See push_down() in insertion_sort.py

one push
down

one push
down

Push down 4 into the

sorted segment

Compare adjacent components:

swap 9 & 4

Compare adjacent components:

swap 8 & 4

Compare adjacent components:

swap 6 & 4

27

Sort list b using Insertion Sort

push_down(b, 1)

b

Need to start with a sorted segment. How do you find one?

push_down(b, 2)

push_down(b, 3)

push_down(b, 4)

push_down(b, 5)

Length 1 segment is sorted

See insertion_sort()

0 1 2 3 4 5

Then sorted segment has length 2

Then sorted segment has length 3

Then sorted segment has length 4

Then sorted segment has length 5

Then entire list is sorted

For a list of length n, call push_down n-1 times.

5/6/2021

4

Helper functions make clear the algorithm

def swap(b, h, k):

def push_down(b, k):

while k > 0 and b[k-1] > b[k]:

swap(b, k-1, k)

k= k-1

def insertion_sort(b):

for i in range(1,len(b)):

push_down(b, i)

def insertion_sort(b):

for i in range(1,len(b)):

k= i

while (k > 0 and

b[k-1] > b[k]) :

temp= b[k-1]

b[k-1]= b[k]

b[k]= temp

28

VS.

Lecture 24 29

Algorithm Complexity

• Count the number of comparisons needed

• In the worst case, need i comparisons to push
down an element in a sorted segment with i
elements.

30

2 3 6 9 8

2 3 6 98

How much work is a push down?

push down
a “big”
value

push down
a “small”

value

This push down takes

2 comparisons

2 3 6 9 1

2 3 6 91

2 3 6 91

2 3 6 91

2 3 6 91

This push down takes

4 comparisons.

Worst case scenario:

n comparisons

needed to push down

into a length n sorted

segment.

Algorithm Complexity (Q)

def swap(b, h, k):

def push_down(b, k):

while k > 0 and b[k-1] > b[k]:

swap(b, k-1, k)

k= k-1

def insertion_sort(b):

for i in range(1,len(b)):

push_down(b, i)

31

Count (approximately) the

number of comparisons

needed to sort a list of

length n

A. ~ 1 comparison

B. ~ n comparisons

C. ~ n2 comparisons

D. ~ n3 comparisons

E. I don’t know

