
Lecture 23:
More on Subclassing

(Chapter 18)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Revised after lecture: on slide 12, the class Shape folder’s tab should read
Shape(object); the class Circle folder’s tab should read Circle(Shape)

http://www.cs.cornell.edu/courses/cs1110/2021sp

Announcements

• Assignment 5 due Wedn May 5th

▪ Minor update—read cover page of A5 pdf posted on course

website

• Prelim 2: we expect feedback to be available on

Monday

• WICC (student org Women in Computing At Cornell)

invites responses from CIS students on how the

semester has gone:

https://forms.gle/L72qPkYvYJDJ8cdx9

3

https://forms.gle/L72qPkYvYJDJ8cdx9

Topics

Continuation from last lecture

• Design considerations for overriding methods

• Class attributes

• Different kinds of comparisons on objects

4

Goal: Make a drawing app

5

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways….

Example

class Shape:

"""A shape located at x,y """

def __init__(self, x, y): …

def draw(self): …

class Circle(Shape):

"""An instance is a circle."""

def __init__(self, x, y, radius): …

def draw(self): …

class Rectangle(Shape):

"""An in stance is a rectangle. """

def __init__(self, x, y, ht, len): …

def draw(self): …

…

Shape

Rectangle Circle

6

Square

object

[Optional] wondering what’s in the object class? See
https://docs.python.org/3/reference/datamodel.html#
basic-customization

Extending Classes

class <name >(<superclass>):

"""Class specification"""

<class variables>

<initializer>

<methods>

Class to extend

(may need module name:

<modulename>.<superclass>)

7

From last lecture:
• Parent class (superclass)
• Child class (subclass)
• Attributes, methods are inherited
• Can override parent’s method
• Function call super() to access

method of parent

Design choices for

method draw

8

Demo using Turtle Graphics

9

A turtle holds a pen and can draw as it walks! Follows

simples commands:
• setx, sety – set start coordinate

• pendown, penup – control whether to draw when moving

• forward

• turn

Part of the turtle module in Python (docs.python.org/3.7/library/turtle.html)

• You don’t need to know it

• Just a demo to explain design choices of draw() in our

classes Shape, Circle, Rectangle, Square

https://docs.python.org/3.7/library/turtle.html

Who draws what?

10

class Shape:

"""Moves pen to correct location"""

def draw(self):

turtle.penup()

turtle.setx(self.x)

turtle.sety(self.y)

turtle.pendown()

class Circle(Shape):

"""Draws Circle"""

def draw(self):

super().draw()

turtle.circle(self.radius)

Note: need to import the turtle module

which allows us to move a pen on a 2D

grid and draw shapes.

No matter the shape, we

want to pick up the pen,

move to the location of the

shape, put the pen down.

But only the shape

subclasses know how to do

the actual drawing.

Job for

Shape

Job for

subclasses

See shapes_v3.py, draw_shapes.py

Class attributes

11

Class Variables can also be Inherited

class Shape: # inherits from object by default

"""Instance is shape @ x,y"""

Class Attribute tracks total num shapes
NUM_SHAPES = 0

. . .

class Circle(Shape):

"""Instance is a Circle @ x,y with radius""”

Class Attribute tracks total num circles

NUM_CIRCLES = 0

. . .

object

NUM_SHAPES

Shape(object)

NUM_CIRCLES

Circle(Shape)

0

0

12

Q1: Name Resolution and Inheritance

• Execute the following:

>>> a = A()

>>> b = B()

• What is value of b.x?

13

A: 4

B: 3

C: 42

D: ERROR

E: I don’t know

class A:
x = 3 # Class Variable
y = 5 # Class Variable

def f(self):
return self.g()

def g(self):
return 10

class B(A):
y = 4 # Class Variable
z = 42 # Class Variable

def g(self):
return 14

def h(self):
return 18

Q2: Name Resolution and Inheritance

• Execute the following:

>>> a = A()

>>> b = B()

• What is value of a.z?

15

A: 4

B: 3

C: 42

D: ERROR

E: I don’t know

class A:
x = 3 # Class Variable
y = 5 # Class Variable

def f(self):
return self.g()

def g(self):
return 10

class B(A):
y = 4 # Class Variable
z = 42 # Class Variable

def g(self):
return 14

def h(self):
return 18

Different kinds of

comparisons

17

Why override __eq__ ? Compare equality

class Shape:

"""Instance is shape @ x,y"""

def __init__(self,x,y):

def __eq__(self, other):

"""If position is the same, then equal as far as Shape knows"""

return self.x == other.x and self.y == other.y

class Circle(Shape):

"""Instance is a Circle @ x,y with radius""”

def __init__(self,x,y,radius):

def __eq__(self, other):

"""If radii are equal, let super do the rest"""

return self.radius == other.radius and super().__eq__(other)

Q3: eq vs. is

== compares equality

is compares identity

c1 = Circle(1, 1, 25)

c2 = Circle(1, 1, 25)

c3 = c2

c1 == c2 → ?

c1 is c2 → ?

c2 == c3 → ?

c2 is c3 → ?

The isinstance Function

isinstance(<obj>,<class>)

▪ True if <obj>’s class is same as or

a subclass of <class>

▪ False otherwise

Example:

c1 = Circle(1,2,4.0)

▪ isinstance(c1,Circle) is True

▪ isinstance(c1,Shape) is True

▪ isinstance(c1,object) is True

▪ isinstance(c1,str) is False

• Generally preferable to type

▪ Works with base types too!
22

c1 id4

id4

Circle

object

Shape

Circleradius 4.0

y 2

x 1

Q4: isinstance and Subclasses

>>> s1 = Rectangle(0,0,10,10)

>>> isinstance(s1, Square)

???

23

A: True

B: False

C: Error

D: I don’t know

s1 id5

id5

Rectangle

object

Shape

Rectangle

y 2

x 1

Square

...

