
Lecture 18:
More on Classes

(Chapter 17)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

http://www.cs.cornell.edu/courses/cs1110/2021sp

Announcements

• Take care of yourself and one another at this difficult

time

• A4 and Lab 14 deadline postponed to Fri Apr 16

• Lab 15 deadline postponed to Mon Apr 19

• In addition to your enrolled lab section, you can join other online

sections to get help on the lab exercises!

• A5 release postponed to a after Wellness Days

• Prelim 2 on Apr 22 (Thurs)

• Prelim 2 seat or online session assigned last Friday. You have

until Wedn Apr 14 to make a “regrade request” in CMS with

justification

3

We know how to make:

• Class definitions

• Class specifications

• The __init__ function

• Attributes (using self)

• Class attributes

• Class methods

4

Review… from last lecture

Rules to live by:

1. Refer to Class Attributes using the Class Name

s1 = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

2. Don’t forget self

 in parameter list of method (method header)

 when defining method (method body)

5

Don’t forget self, Part 1

6

s1 = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”)

s1.enroll("AEM 2400", 4)

TypeError: enroll() takes 2
positional arguments but 3
were given

<var>.<method_name> always

passes <var> as first argument

class Student:

def __init__(self, netID, courses, major):

self.netID = netID

self.courses = courses

self.major = major

< rest of constructor goes here >

def enroll(self, name, n): # if you forget self

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append((name, n))

self.n_credit = self.n_credit + n

print("Welcome to "+ name)

Don’t forget self, Part 2 (Q)

7

s1 = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”)

s1.enroll("AEM 2400", 4)

class Student:

def __init__(self, netID, courses, major):

self.netID = netID

self.courses = courses

self.major = major

< rest of constructor goes here >

def enroll(self, name, n):

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append((name, n))

self.n_credit = self.n_credit + n

print("Welcome to "+ name)

What happens?
A) Error
B) Nothing, self is not needed
C) creates new local variable n_credit
D) creates new instance variable

n_credit
E) creates new Class attribute n_credit

Method Definitions

Looks like a function def

 But indented inside class

 1st parameter always self

Example:

s1.enroll("AEM 2400", 4)
 Go to class folder for s1 (i.e.,

Student) that’s where enroll is

defined

 Now enroll is called with s1
as its first argument

 Now enroll knows which

instance of Student it is

working with

class Student():

def __init__(self, netID, courses=[], major=None):

self.netID = netID

self.courses = courses

self.major = major

< rest of init fn goes here >

def enroll(

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append([cname, n])

self.n_credit = self.n_credit + n

print("Welcome to "+ cname) 9

__init__(self, netID, …)
enroll(self, cname, n)

Student

22max_credit

self, cname, n):

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

init is just one of many Special Methods

Start/end with 2 underscores

 This is standard in Python

 Used in all special methods

 Also for special attributes

__init__ for initializer

__str__ for str()

__eq__ for ==

__lt__ for <, …

Optional: for a complete list, see

https://docs.python.org/3/reference/

datamodel.html#basic-customization

class Point2:

"""Instances are points in 2D space"""
…

def __init__(self,x=0,y=0):

"""Initializer: makes new Point2"""

…

def __str__(self):

"""Returns: string with contents"""

return '(' + str(self.x) + ', ' + str(self.y) + ')'

def __eq__(self, other):

"""Returns: True if both coordinates equal"""

return self.x == other.x and self.y == other.y

10

See Fractions example at the end of this lecture

https://docs.python.org/3/reference/datamodel.html#basic-customization

• Type: set of values and the operations on them

 int: (set: integers; ops: +, –, *, /, …)

 Point2 (set: x,y coordinates; ops: distanceTo, …)

 Card (set: suit * rank combinations; ops: ==, !=, <)

 Others to think about: Person, Student, Image, Date, etc.

• To define a class, think of a type you want to make

Designing Types

11

Making a Class into a Type

1. What values do you want in the set?

 What are the attributes? What values can they have?

 Are these attributes shared between instances (class attributes)

or different for each instance (instance attributes)?

 What are the class invariants: things you promise to keep

true after every method call (see n_credit invariant)

2. What operations do you want?

 This often influences the previous question

 What are the method specifications: states what the method

does & what it expects (preconditions)

 Are there any special methods that you will need to provide?

Write your code to make it so! 12

Let’s make a word guessing game

• There is a secret word.

• The user has 10 chances to guess letters until the

word has been spelled out.

• Would be great to have a class SecretWord that

would keep track of both the word we’re

guessing and what the user sees / has guessed so

far.

Play the game. 14

How does the game go?

word_list = [… candidate

words for user

to guess ...]

N_GUESSES = 10

Set the secret word

User guesses

until no more guesses

or secret is solved

Reveal the word

16

What should the SecretWord offer me?

Like a string, but two of them:

1. the secret word

2. what the user sees

I should be able to:

• Set the secret word

• Print out the word as guessed “so far”

• Determine whether the game is over

• Reveal the secret word

17

Example: SecretWord

1. What values do you want in the set?

 What are the attributes? What values can they have?

 Are these attributes shared between instances (class attributes)

or different for each attribute (instance attributes)?

 What are the class invariants: things you promise to keep

true after every method call

2. What operations do you want?

 This often influences the previous question

 What are the method specifications: states what the method

does & what it expects (preconditions)

 Are there any special methods that you will need to provide?

18

Planning out Class: the Attributes

class SecretWord:
"""A word to be guessed by a user in a word guessing game.

Instance Attributes:
secret_word: word being guessed [str of lower case letters]
display_word: word as the user sees it: the letters of secret_word show

correctly guessed letters [str of lower case letters and '_']
secret_word and display_word agree on all letters and have same length

"""

What are the attributes? What values can they have?

Are these attributes shared between instances (class attributes)

or different for each attribute (instance attributes)?

What are the class invariants: things you promise to keep true

after every method call 19

Planning out Class: the Attributes

class SecretWord:
"""A word to be guessed by a user in a word guessing game.

Instance Attributes:
secret_word: word being guessed [str of lower case letters]
display_word: word as the user sees it: the letters of secret_word show

correctly guessed letters [list of single lower case letters and '_']
secret_word and display_word agree on all letters and have same length

"""

What are the attributes? What values can they have?

Are these attributes shared between instances (class attributes)

or different for each attribute (instance attributes)?

What are the class invariants: things you promise to keep true

after every method call 20

Planning out Class: the Methods

def __init__(self, word):
"""Initializer: creates both secret_word and display_word
from word [a str of lower case letters]"""

def __str__(self):
"""Returns: both words"""

def __len__(self):
"""Returns: the length of the secret word"""

Are there any special methods that you will need to provide?

What are their preconditions?

You don’t have to do this. But you should consider it.

Careful. Make sure overloading is the right thing to do.
21

?

?

Planning out Class: the Methods

def reveal(self):
"""Prints the word being guessed"""

def print_word_so_far(self):
"""Prints the display_word """

def apply_guess(self, letter):
"""Updates the display_word to reveal all instances of letter as they
appear in the secret_word. (‘_’ is replaced with letter)
letter: the user's guess [1-character string in A..Z or a..z] """

def is_solved(self):
"""Returns True if the entire word has been guessed"""

What are the method specifications: states what the method does

& what it expects (preconditions)
22

How is SecretWord to be used?

import random, wordGuess

word_list = [… candidate

words for user

to guess ...]

N_GUESSES = 10

Set the secret word

User guesses

until no more guesses

or secret is solved

Reveal the word

23

How is SecretWord to be used?

import random, wordGuess

word_list = [… candidate

words for user

to guess ...]

N_GUESSES = 10

Set the secret word

guess_the_word(

secret word,

N_GUESSES)

Reveal the word

24

if secret is solved or out of guesses
print appropriate message and stop game

otherwise
print the word-in-progress
user guesses a letter
apply guess to the secret word
potentially guess again (is secret solved?

#guesses left?)

How is SecretWord to be used?

import random, wordGuess

word_list = [… candidate

words for user

to guess ...]

N_GUESSES = 10

Set the secret word

guess_the_word(

secret word,

N_GUESSES)

Reveal secret word

25

def guess_the_word(secret, n_guesses_left):
if secret is solved:

print("YOU WIN!!!")
elif n_more_guesses==0:

print("Sorry you're out of guesses")
else:

print the word-in-progress
user_guess= input("Guess a letter: ")
apply guess to the secret word
guess_the_word(secret, n_guesses_left-1)

Implementing a Class

• All that remains is to fill in the methods. (All?!)

• When implementing methods:

1. Assume preconditions are true (checking is friendly)

2. Assume class invariant is true to start

3. Ensure method specification is fulfilled

4. Ensure class invariant is true when done

• Later, when using the class:

 When calling methods, ensure preconditions are true

 If attributes are altered, ensure class invariant is true

27

Implementing an Initializer (Q)
def __init__(self, word):
"""Initializer: creates both secret_word and display_word

from word [a str of lower case letters] ""” # JOB OF THIS METHOD

A

B

C

Instance variables: # WHAT HAS BETTER BE TRUE WHEN WE’RE DONE
secret_word: [str of lower case letters]
display_word: the letters of secret_word show correctly guessed letters

[list of single lower case letters and '_']
secret_word and display_word agree on all letters and have same length

29

SecretWord.secret_word = word
SecretWord.display_word = ['_']*len(word)

secret_word = word
display_word = ['_']*len(word)

self.secret_word = word
self.display_word = ['_']*len(word)

Implementing apply_guess()

31

secret_word: [str of lower case letters] # WHAT STILL HAD BETTER BE TRUE
display_word: the letters of secret_word show correctly guessed letters

[str of lower case letters and '_']
secret_word and display_word agree on all letters and have same length

secret_word: [str of lower case letters] # WHAT YOU CAN COUNT ON
display_word: the letters of secret_word show correctly guessed letters

[list of single lower case letters and '_']
secret_word and display_word agree on all letters and have same length

def apply_guess(self, letter):
"""Updates the display_word to reveal all instances of letter as they
appear in the secret_word. ('_' is replaced with letter) # JOB OF METHOD

letter: the user's guess [1-character string in A..Z or a..z]""" # ASSUME TRUE

Watch video:

operator overloading

35

Planning out a Class: Fraction

• What attributes?

• What invariants?

• What methods?

• What initializer and other

special methods?

class Fraction:

"""Instance is a fraction n/d

Attributes:

numerator: top [int]

denominator: bottom [int > 0]
"""

def __init__(self,n=0,d=1):

"""Init: makes a Fraction"""

assert type(n)==int

assert type(d)==int and d>0

self.numerator = n

self.denominator = d
36

Problem: Doing Math is Unwieldy

What We Want

1

2
+
1

3
+
1

4
∗
5

4

What We Get

>>> p = Fraction(1,2)

>>> q = Fraction(1,3)

>>> r = Fraction(1,4)

>>> s = Fraction(5,4)

>>> (p.add(q.add(r))).mult(s)

37

Pain!

Why not use the

standard Python

math operations?

Operator Overloading: Addition

class Fraction:

"""Instance attributes:

numerator: top [int]

denominator: bottom [int > 0]""”

def __add__(self,q):

"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""

assert type(q) == Fraction

bot = self.denominator*q.denominator

top = (self.numerator*q.denominator+

self.denominator*q.numerator)

return Fraction(top,bot)

>>> p = Fraction(1,2)

>>> q = Fraction(3,4)

>>> r = p+q

>>> r = p.__add__(q)

Python

converts to

Operator overloading uses

method in object on left.

38

Operator Overloading: Multiplication

class Fraction:

"""Instance attributes:

numerator: top [int]

denominator: bottom [int > 0]""”

def __mul__(self,q):

"""Returns: Product of self, q

Makes a new Fraction; does not

modify contents of self or q

Precondition: q a Fraction"""

assert type(q) == Fraction

top = self.numerator*q.numerator

bot = self.denominator*q.denominator

return Fraction(top,bot)

>>> p = Fraction(1,2)

>>> q = Fraction(3,4)

>>> r = p*q

>>> r = p.__mul__(q)

Python

converts to

Operator overloading uses

method in object on left.

39

Operator Overloading: Equality

• By default, == compares

folder IDs, e.g., the following

expression evaluates to False:

Fraction(2,5)==Fraction(2,5)

• Can implement __eq__ to

check for equivalence of two

Fractions instead

class Fraction:

"""Instance attributes:

numerator: top [int]

denominator: bottom [int > 0]"""

def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""

if type(q) != Fraction:

return False

left = self.numerator*q.denominator

right = self.denominator*q.numerator

return left == right

40

Optional:

for a complete list, see https://docs.python.org/3/reference/datamodel.html#basic-customization

https://docs.python.org/3/reference/datamodel.html#basic-customization

