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Lecture 16:  
More Recursion!

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee, 
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• Prelim 1 accounts for 15% of course grade only. Treat it 

as a diagnostic tool: is there a topic that you need to 

review? Strengthen your foundation now. 1-on-1 

meeting opportunities to be available on CMS soon

• Attend your lab session! New experiment: you can 

additionally attend another online lab session to get 

more help on weekly lab exercises

• ACSU annual Research Night, Apr 8 5:30-7:30pm

 Interested in undergraduate research in CS?

 https://discord.com/invite/cCM3QuGY3B
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Recursion

Recursive Function: 

A function that calls itself (directly or indirectly)

Recursive Definition: 

A definition that is defined in terms of itself
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From previous lecture: Factorial

Non-recursive definition:

n! = n× n-1 ×… × 2 × 1  

= n (n-1 ×… × 2 × 1)

Recursive definition:

n! = n (n-1)!

0! = 1
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for n > 0 Recursive case

Base case

Recursion
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factorial 1, 3

n 3

def factorial(n):

"""Returns: factorial of n.

Precondition: n ≥ 0 an int"""

if n == 0:

return 1

return n*factorial(n-1)

factorial(3)

1

2

3

Now what?

Each call is 

a new frame

Divide and Conquer

Goal: Solve problem P on a piece of data
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data

Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://discord.com/invite/cCM3QuGY3B
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Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
# 1. Handle base case

# 2. Break into two parts

# 3. Combine the result
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H e l l o !

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
# 1. Handle base case

# 2. Break into two parts
left   = reverse(s[0])
right = reverse(s[1:])

# 3. Combine the result
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H e l l o !

left

right

H e l l o !

! o l l e

If this is how we break it up….

How do we combine it?

Alternate Implementation (Q)

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
# 1. Handle base case
if len(s) <= 1:

return s

# 2. Break into two parts
half   = len(s)//2
left   = reverse(s[:half])
right = reverse(s[half:])

# 3. Combine the result
return right+left
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A: YES

B: NO

Does this work?
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def reverse(s):
if len(s) <= 1:

return s
half   = len(s)//2
left   = reverse(s[:half])
right = reverse(s[half:])
return right+left

H e l l o !
half←3

reverse(s[:half])

Execute the function call  reverse(‘Hello!’)

H e l
half←1

reverse(s[:half])

H

left←’H’

reverse(s[half:])

e l
half←1

reverse(s[:half])

e

left←’e’

reverse(s[half:])

l

right←’l’

right←’le’

left←’leh’

reverse(s[half:])

l o !
half←1

reverse(s[:half])

l

left←’l’

reverse(s[half:])

o !

reverse(s[:half])

o

reverse(s[half:])

!

right←’!o’

half←1
left←’o’
right←’!’

right←’!ol’

Result: ‘!olleh’

’le’ ’!o’

’leH’ ’!ol’
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def reverse(s):
if len(s) <= 1:

return s
half   = len(s)//2
left   = reverse(s[:half])
right = reverse(s[half:])
return right+left

H e l l o !
half←3

reverse(s[:half])

Execute the function call  reverse(‘Hello!’)

H e l
half←1

reverse(s[:half])

H

reverse(s[half:])

e l
half←1

reverse(s[:half])

e

reverse(s[half:])

l

reverse(s[half:])

l o !
half←1

reverse(s[:half])

l

reverse(s[half:])

o !

reverse(s[:half])

o

reverse(s[half:])

!

half←1

Result: ‘!olleh’

’le’ ’!o’

’leH’ ’!ol’

#1 call

#2

#3 #4

#5 #6

#7

#8 #9

#10 #11
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Following the Recursion

a b cdeblank

deblank a b cdeblank

stop (base case)
adeblank

stop (base case)

b cdeblank

…

From last lecture: did you visualize a call of deblank using Python Tutor? Pay attention to the 
recursive calls (call frames opening up), the completion of a call (sending the result to the call 
frame “above”), and the resulting accumulation of the answer.

def deblank(s):
""" Returns: s without spaces """
if s == "":

return s
elif len(s)==1:

return "" if s[0]==" " else s

left= deblank(s[0])
right= deblank(s[1:])

return left+right

x = deblank(' a b c')
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• Example:

AMANAPLANACANALPANAMA

MOM

• Dictionary definition:  “a word that reads (spells) the 

same backward as forward”

• Can we define recursively?

Example: Palindromes
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have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:

 its first and last characters are equal, and

 the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Implement: def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome
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Example: Palindromes

String with ≥ 2 characters is a palindrome if:

 its first and last characters are equal, and

 the rest of the characters form a palindrome

def ispalindrome(s):

endsAreSame = _______________________
middleIsPali = ________________________
return _________________________

Recursive

Definition
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if len(s) < 2:
return True

"""Returns: True if s is a palindrome"""

Base case

Recursion and Objects

• Class Person

 Objects have 3 attributes

 name: String 

 parent1: Person (or None)

 parent2:   Person (or None)

• Represents the “family tree”

 Goes as far back as known

 Attributes parent1 and parent2

are None if not known

• Constructor: Person(name,p1,p2)
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John Sr. Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

# 1. Handle base case.
# No parents

# (no ancestors)

# 2. Break into two parts
# Has parent1 or parent2

# Count ancestors of each one

# (plus parent1, parent2 themselves)

# 3. Combine the result
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Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

11 ancestors

John Sr. Pamela

Recursion and Objects
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Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

11 ancestors

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

# 1. Handle base case.
# No parents

# (no ancestors)

# 2. Break into two parts
# Has parent1 or parent2

# Count ancestors of each one

# (plus parent1, parent2 themselves)

# 3. Combine the result

parent1s = 0
if p.parent1 != None:

|    parent1s = 1+num_ancestors(p.parent1)
parent2s = 0
if p.parent2 != None:

|    parent2s = 1+num_ancestors(p.parent2)

if p.parent1 == None and p.parent2 == None:
|       return 0

John Sr.

return parent1s+parent2s
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def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

# 1. Handle base case.
if p.parent1 == None and p.parent2 == None:

return 0

# 2. Break into two parts
parent1s = 0
if p.parent1 != None:

parent1s = 1+num_ancestors(p.parent1s)
parent2s = 0
if p.parent2 != None:

parent2s = 1+num_ancestors(p.parent2s)

# 3. Combine the result
return parent1s+parent2s

Recursion and Objects

51

We don’t actually 

need this. 

It is handled by the 

conditionals in #2.

Exercise: All Ancestors

def all_ancestors(p):

"""Returns: list of all ancestors of p"""

# 1. Handle base case.

# 2. Break into parts.

# 3. Combine answer.
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John Sr. Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

Optional practice question. Try it after you complete this week’s lab exercise.


