
4/5/2021

1

Lecture 16:
More Recursion!

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• Prelim 1 accounts for 15% of course grade only. Treat it

as a diagnostic tool: is there a topic that you need to

review? Strengthen your foundation now. 1-on-1

meeting opportunities to be available on CMS soon

• Attend your lab session! New experiment: you can

additionally attend another online lab session to get

more help on weekly lab exercises

• ACSU annual Research Night, Apr 8 5:30-7:30pm

 Interested in undergraduate research in CS?

 https://discord.com/invite/cCM3QuGY3B

2

Recursion

Recursive Function:

A function that calls itself (directly or indirectly)

Recursive Definition:

A definition that is defined in terms of itself

3

From previous lecture: Factorial

Non-recursive definition:

n! = n× n-1 ×… × 2 × 1

= n (n-1 ×… × 2 × 1)

Recursive definition:

n! = n (n-1)!

0! = 1

4

for n > 0 Recursive case

Base case

Recursion

8

factorial 1, 3

n 3

def factorial(n):

"""Returns: factorial of n.

Precondition: n ≥ 0 an int"""

if n == 0:

return 1

return n*factorial(n-1)

factorial(3)

1

2

3

Now what?

Each call is

a new frame

Divide and Conquer

Goal: Solve problem P on a piece of data

26

data

Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://discord.com/invite/cCM3QuGY3B

4/5/2021

2

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
1. Handle base case

2. Break into two parts

3. Combine the result

27

H e l l o !

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
1. Handle base case

2. Break into two parts
left = reverse(s[0])
right = reverse(s[1:])

3. Combine the result

28

H e l l o !

left

right

H e l l o !

! o l l e

If this is how we break it up….

How do we combine it?

Alternate Implementation (Q)

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle base case
if len(s) <= 1:

return s

2. Break into two parts
half = len(s)//2
left = reverse(s[:half])
right = reverse(s[half:])

3. Combine the result
return right+left

35

A: YES

B: NO

Does this work?

37

def reverse(s):
if len(s) <= 1:

return s
half = len(s)//2
left = reverse(s[:half])
right = reverse(s[half:])
return right+left

H e l l o !
half←3

reverse(s[:half])

Execute the function call reverse(‘Hello!’)

H e l
half←1

reverse(s[:half])

H

left←’H’

reverse(s[half:])

e l
half←1

reverse(s[:half])

e

left←’e’

reverse(s[half:])

l

right←’l’

right←’le’

left←’leh’

reverse(s[half:])

l o !
half←1

reverse(s[:half])

l

left←’l’

reverse(s[half:])

o !

reverse(s[:half])

o

reverse(s[half:])

!

right←’!o’

half←1
left←’o’
right←’!’

right←’!ol’

Result: ‘!olleh’

’le’ ’!o’

’leH’ ’!ol’

38

def reverse(s):
if len(s) <= 1:

return s
half = len(s)//2
left = reverse(s[:half])
right = reverse(s[half:])
return right+left

H e l l o !
half←3

reverse(s[:half])

Execute the function call reverse(‘Hello!’)

H e l
half←1

reverse(s[:half])

H

reverse(s[half:])

e l
half←1

reverse(s[:half])

e

reverse(s[half:])

l

reverse(s[half:])

l o !
half←1

reverse(s[:half])

l

reverse(s[half:])

o !

reverse(s[:half])

o

reverse(s[half:])

!

half←1

Result: ‘!olleh’

’le’ ’!o’

’leH’ ’!ol’

#1 call

#2

#3 #4

#5 #6

#7

#8 #9

#10 #11
41

Following the Recursion

a b cdeblank

deblank a b cdeblank

stop (base case)
adeblank

stop (base case)

b cdeblank

…

From last lecture: did you visualize a call of deblank using Python Tutor? Pay attention to the
recursive calls (call frames opening up), the completion of a call (sending the result to the call
frame “above”), and the resulting accumulation of the answer.

def deblank(s):
""" Returns: s without spaces """
if s == "":

return s
elif len(s)==1:

return "" if s[0]==" " else s

left= deblank(s[0])
right= deblank(s[1:])

return left+right

x = deblank(' a b c')

4/5/2021

3

• Example:

AMANAPLANACANALPANAMA

MOM

• Dictionary definition: “a word that reads (spells) the

same backward as forward”

• Can we define recursively?

Example: Palindromes

42

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:

 its first and last characters are equal, and

 the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Implement: def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome

43

Example: Palindromes

String with ≥ 2 characters is a palindrome if:

 its first and last characters are equal, and

 the rest of the characters form a palindrome

def ispalindrome(s):

endsAreSame = _______________________
middleIsPali = ________________________
return _________________________

Recursive

Definition

44

if len(s) < 2:
return True

"""Returns: True if s is a palindrome"""

Base case

Recursion and Objects

• Class Person

 Objects have 3 attributes

 name: String

 parent1: Person (or None)

 parent2: Person (or None)

• Represents the “family tree”

 Goes as far back as known

 Attributes parent1 and parent2

are None if not known

• Constructor: Person(name,p1,p2)

47

John Sr. Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

1. Handle base case.
No parents

(no ancestors)

2. Break into two parts
Has parent1 or parent2

Count ancestors of each one

(plus parent1, parent2 themselves)

3. Combine the result

49

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

11 ancestors

John Sr. Pamela

Recursion and Objects

50

Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

11 ancestors

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

1. Handle base case.
No parents

(no ancestors)

2. Break into two parts
Has parent1 or parent2

Count ancestors of each one

(plus parent1, parent2 themselves)

3. Combine the result

parent1s = 0
if p.parent1 != None:

| parent1s = 1+num_ancestors(p.parent1)
parent2s = 0
if p.parent2 != None:

| parent2s = 1+num_ancestors(p.parent2)

if p.parent1 == None and p.parent2 == None:
| return 0

John Sr.

return parent1s+parent2s

4/5/2021

4

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

1. Handle base case.
if p.parent1 == None and p.parent2 == None:

return 0

2. Break into two parts
parent1s = 0
if p.parent1 != None:

parent1s = 1+num_ancestors(p.parent1s)
parent2s = 0
if p.parent2 != None:

parent2s = 1+num_ancestors(p.parent2s)

3. Combine the result
return parent1s+parent2s

Recursion and Objects

51

We don’t actually

need this.

It is handled by the

conditionals in #2.

Exercise: All Ancestors

def all_ancestors(p):

"""Returns: list of all ancestors of p"""

1. Handle base case.

2. Break into parts.

3. Combine answer.

52

John Sr. Pamela

Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

Optional practice question. Try it after you complete this week’s lab exercise.

