

Lecture 12: Nested Lists and Dictionaries

(Sections 11.1-11.5)
CS 1110
Introduction to Computing Using Python
[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Nested Lists

- Lists can hold any objects
- Lists are objects
- Therefore lists can hold other lists!
$\mathrm{b}=[3,1]$
$c=[1,4, b]$
$a=[2,1]$

$x=[1, a, c, 5]$

xilili]

Two Dimensional Lists

Table of Data

Announcements

- Be sure to go to section for Labs 11 \& 12
- A3: first submission ("part A") due Mar 24; final submission due Mar 28
- Definitive source for due dates is the course webpage, but we try to also put due dates on the Canvas calendar
- A2 grades and solutions available around Wednesday
- Next lecture will be a review session
- Tues $3 / 30$ lecture will be open office hour
- Prelim 1 Study Guide available tonight. Be sure to read it!
- Exam logistics: seat number and Zoom link to be distributed via CMS by end of the week. Online exam takers will be contacted by proctor to do a required short mock exam before actual exam.

Two Dimensional Lists

Two Dimensional Lists

Overview of Two-Dimensional Lists

	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$			
0	5	4	7	3
1	4	8	9	7
2	5	1	2	3
3	4	1	2	9

$\ggg d=[[5,4,7,3],[4,8,9,7],[5,1,2,3],[4,1,2,9]]$
>>> d[3][2] Access value at row 3, col 2
2
$\gg \mathrm{d}[3][2]=8 \quad$ Assign value at row 3, col 2
>>> d
$[[5,4,7,3],[4,8,9,7],[5,1,2,3],[4,1,8,9]]$
>>> len(d) Number of rows of d
4
>>> len(d[2]) Number of cols in row 2 of d

Ragged Lists: Rows w/ Different Length

- $b=[[17,13,19],[28,95]]$

Exercise 1

def print_all_rows(my_table):
"""Prints all rows of the table, one row (list) on each line.
Preconditions: my_table is a table of numbers my_table is not empty

IIIII

How Multidimensional Lists are Stored

- b holds id of a one-dimensional list
- Has len(b) elements
- $\mathrm{b}[\mathrm{i}]$ holds id of a one-dimensional list - Has len(b[i]) elements

How to access every element of nested list?

Exercise 2

def print_all_elements(my_table):
"""Prints all elements of the table, one element on each line.
Preconditions: my_table is a table of numbers my_table is not empty
"!"!

Data Wrangling: Transpose Idea

4 lists: 2 elements in each
How to transpose?

- $1^{\text {st }}$ element of each list gets appended to $1^{\text {st }}$ list
- $2^{\text {nd }}$ element of each list gets appended to $2^{\text {nd }}$ list

Data Wrangling: Transpose Code

def transpose(table):	
"""Returns: copy of table with rows and columns swapped Precondition: table is a (non-ragged) 2d List"""	12
n_rows = len(table)	34
```n_cols = len(table[0]) # All rows have same no. cols new_table = [] # Result accumulator```	56
for c in range( n _cols):	
row = [] \# Single row accumulator	
for $r$ in range(n_rows):	
row.append(table[r][c]) \# Build up new row	$135$
new_table.append(row) \# Add new row to new table	246
return new_table	
$\mathrm{d}=[[1,2],[3,4],[5,6]]$	
d_v2 = transpose(d)	20

## Using Dictionaries (Type dict)



## Data Wrangling: Transpose Code



## Dictionaries (Type dict)

Description	Python Syntax
- List of key-value pairs   - Keys are unique   - Values need not be   - Example: net-ids   - net-ids are unique (a key)   - names need not be (values)   - js1 is John Smith (class '13)   - js2 is John Smith (class '16)	- Create with format: \{key1:value1, key2:value2, ...\}   - Keys must be immutable   - ints, floats, bools, strings   - Not lists or custom objects   - Values can be anything   - Example:   d = \{'js1':'John Smith', 'js2':'John Smith', 'tm55':'Toni Morrison'\}

## Using Dictionaries (Type dict)



## Using Dictionaries (Type dict)

> - Dictionaries are mutable $d=\{$ 'ec1':'Ezra','ec2':'Ezra',
> - Can reassign values
> - d['ec1'] = 'Ellis'
> - Can add new keys
> - d['psb26'] = 'Pearl' 'tm55':Toni','psb26':'Pearl'\}

Slices and Multidimensional Lists


## Using Dictionaries (Type dict)

```
- Dictionaries are mutable d={'ec1':'Ezra','ec2':'Ezra',
 - Can reassign values 'psb26':'Pearl'}
- d['ec1'] = 'Ellis'
- Can add new keys
- d['psb26'] = 'Pearl'
- Can delete keys
- del d['tm55']
```

d = \{'ecl':'Ezra','ec2':'Ezra', 'psb26':'Pearl'\}


Deleting key deletes both key and value

Be sure to read
Textbook 11.1-11.5 for
additional examples!

## Slices \& Multidimensional Lists (Q1)

- Create a nested list - What is now in $x$ ?
>>> b = [[9,6],[4,5],[7,7]]
- Get a slice
>>> $\mathrm{x}=\mathrm{b}[: 2]$
- Append to a row of $x$ >>> x[1].append(10)

$$
\begin{array}{|l}
\hline \text { A: }[[9,6,10]] \\
\text { B: }[[9,6],[4,5,10]] \\
\text { C: }[[9,6],[4,5,10],[7,7]] \\
\text { D: }[[9,6],[4,10],[7,7]] \\
\text { E: I don't know }
\end{array}
$$

## Slices \& Multidimensional Lists (Q2)

- Create a nested list
- What is now in b ?
>>> $b=[[9,6],[4,5],[7,7]]$
- Get a slice
>> $\mathrm{x}=\mathrm{b}[: 2$ ]
- Append to a row of $x$ >>> $\mathrm{x}[1]$.append(10)
- x now has nested list

> A: $[[9,6],[4,5],[7,7]]$
> B: $[[9,6],[4,5,10]]$
> C: $[[9,6],[4,5,10],[7,7]]$
> D: $[[9,6],[4,10],[7,7]]$
> E: I don't know

