
1

Lecture 10:
Lists and Sequences

(Sections 10.0-10.2, 10.4-10.6, 10.8-10.13)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• Only if you cannot write Prelim 1 in person on Mar 30 at 6:30pm

Ithaca time or have SDS exam accommodations, do the CMS

“assignment” called “Prelim 1 alternate format/time request”

(both Parts A & B). Request deadline is Mar 16 11:59pm.

Legitimate reasons needed to request online format and/or

alternative time

 Conflicting exam listed on University Evening Prelim Schedule

 You are not in Ithaca

• “Go to” lab weekly!! Stay on track. Great student:staff ratio!

• A2 due Mar 19 at 11:59pm

• Window to submit A1 revisions closes Mar 20 at 11:59pm

Sequences: Lists of Values
String

• s = 'abc d'

• Put characters in quotes

 Use \' for quote character

• Access characters with []

 s[0] is 'a'

 s[5] causes an error

 s[0:2] is 'ab' (excludes c)

 s[2:] is 'c d‘

• len(s) 5, length of string

List

• x = [5, 6, 5, 9, 15, 23]

• Put values inside []

 Separate by commas

• Access values with []

 x[0] is 5

 x[6] causes an error

 x[0:2] is [5, 6] (excludes 2nd 5)

 x[3:] is [9, 15, 23]

• len(x) 6, length of list

5

a b c d

0 1 2 3 4

5 6 5 9 15

0 1 2 3 4

23

5

Sequence is a name we give to both

Lists Have Methods Similar to String

• <list>.index(<value>)

 Return position of the value

 ERROR if value is not there

 x.index(9) evaluates to 3

• <list>.count(<value>)

 Returns number of times value appears in list

 x.count(5) evaluates to 2

x = [5, 6, 5, 9, 15, 23] But to get the length of
a list you use a function,

not a class method:

len(x)

x.len()

6

id1

0

1

2

3

5

7

4

-2

list

Representing Lists

Wrong:

8

Correct:

x = [5, 7, 4,-2]

id1x5, 6, 7, -2x

Indices

Heap Space Global Space Global Space

Lists vs. Class Objects

List

• Attributes are indexed

 Example: x[2]

Objects

• Attributes are named

 Example: p.x

9

id2x id3

x 1

y 2

z 3

Point3

id2

0

1

2

3

5

7

4

-2

list

id3p

Heap Space Global Space Heap Space Global Space

http://www.cs.cornell.edu/courses/cs1110/2021sp

2

Lists Can Hold Any Type

10

id1

0

1

2

3

5

7

4

-2

list

Heap Space

id2list_of_strings

id2

0

1

2

3

'h'

'i'

''

'there!'

list

list_of_integers = [5, 7, 3+1, -2]

list_of_strings = ['h', 'i', '', 'there!']

id1list_of_integers

Global Space

Expression evaluates to
value; value goes in list

No Really, Lists Can Hold Any Type!

11

id5list_of_points

id5

0

1

2

3

id1

id2

id3

id4

list

Heap Space

Global Space

x 81 y 2 z 3

id1
Point3

x 6 y 2 z 3

id2
Point3

x 4 y 4 z 3

id3
Point3

x 1 y 2 z 2

id4
Point3

id7list_of_various_types

id7

0

1

2

3

5

3.14

‘happy’

id6

list

x 10 y 0 z 13

id6
Point3

list_of_points = [Point3(81,2,3),
Point3(6,2,3),
Point3(4,4,3),
Point3(1,2,2)]

Lists of Objects

• List elements are variables

 Can store base types and ids

 Cannot store folders

13

id1p1

Heap Space Global Space

x 1 y 2 z 3

id1
Point3

id2p2

id3p3

x 4 y 5 z 6

id2
Point3

x 7 y 8 z 9

id3
Point3

p1 = Point3(1, 2, 3)

p2 = Point3(4, 5, 6)

p3 = Point3(7, 8, 9)

x = [p1,p2,p3]

id4

0
1
2

id1
id2
id3

list

id4x

How do I get this y?

id1

0

1

2

3

5

7

4

-2

list

List is mutable; strings are not

• Format:

<var>[<index>] = <value>

 Reassign at index

 Affects folder contents

 Variable is unchanged

• Strings cannot do this

 Strings are immutable

x = [5, 7,4,-2]

x[1] = 8

s = “Hello!”

s[0] = ‘J’
TypeError: 'str' object does not
support item assignment

id1x

x 8

Heap Space Global Space

“Hello!”s

What do you think this does?

List Methods Can Alter the List

• <list>.append(<value>)
 Adds a new value to the end of list

 x.append(-1) changes the list to [5, 6, 5, 9, -1]

• <list>.insert(<index>,<value>)
 Puts value into list at index; shifts rest of list right

 y.insert(2,-1) changes the list to [15, 16, -1, 15, 19]

• <list>.sort()

x = [5, 6, 5, 9] See Python API for

more

16

y = [15, 16, 15, 19]

Q1: Insert into list

• Execute the following:

>>> x = [5, 6, 5, 9, 10]

>>> x[3] = -1

>>> x.insert(1, 2)

• What is x[4]?

A: 10

B: 9

C: -1

D: ERROR

E: I don’t know

17

3

Recall: identifier assignment  no swap

19

import shapes

def swap(p, q):
tmp = p
p = q
q = tmp

p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

swap(p, q)

At the end of swap: parameters p and q are swapped

global p and q are unchanged

id6p

Heap Space Global Space

x 1 y 2 z 3

id6
Point3

id7q

x 3 y 4 z 5

id7
Point3

swap

p id7 q id6 tmp id6

RETURN NONE

Call Frame

Recall: Attribute Assignment  swap!

20

import shapes

def swap_x(p, q):
tmp = p.x
p.x = q.x
q.x = tmp

p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

swap_x(p, q)

At the end of swap: parameters p and q are unchanged

global p and q are unchanged, attributes x are swapped

id6p

Heap Space Global Space

x 3 y 2 z 3

id6
Point3

id7q

x 1 y 4 z 5

id7
Point3

swap_x

p id6 q id7 tmp 1

RETURN NONE

Call Frame

Q2: Swap List Values?

def swap(b, h, k):

"""Procedure swaps b[h] and b[k] in b

Precondition: b is a mutable list, h
and k are valid positions in the list""”

temp= b[h]

b[h]= b[k]

b[k]= temp

x = [5,4,7,6,8]

swap(x, 3, 4)

print(x[3])

id4x id4

21

1

2

3 0

1

2

3

5

4

7

6

4 8

What gets printed?

A: 8

B: 6

C: Something else

D: I don’t know

Heap Space Global Space

List Slices Make Copies:
a slice of a list is a new list

27

x = [5, 6, 5, 9]

y = x[1:3] id5x id5

0

1

2

3

5

6

5

9

list

id6y

id6

0

1

6

5

list
copy means

new folder

Heap Space Global Space

Q3: List Slicing

28

• Execute the following:

>>> x = [5, 6, 5, 9, 10]

>>> y = x[1:]

>>> y[0] = 7

• What is x[1]?

A: 7

B: 5

C: 6

D: ERROR

E: I don’t know

Q4

30

A: 7

B: 5

C: 6

D: ERROR

E: I don’t know

• Execute the following:

>>> x = [5, 6, 5, 9, 10]

>>> y = x

>>> y[1] = 7

• What is x[1]?

4

Things that Work for All Sequences

x = [5, 6, 9, 6, 15, 5]s = ‘slithy’

x.index(5) → 0
x.count(6) → 2
len(x) → 6
x[4] → 15
x[1:3] → [6, 9]
x[3:] → [6, 15, 5]
x[–2] → 15
x + [1, 2] → [5, 6, 9, 6, 15, 5, 1, 2]
x * 2 → [5, 6, 9, 6, 15, 5, 5, 6, 9, 6, 15, 5]

15 in x → True

s.index(‘s’) → 0
s.count(‘t’) → 1
len(s) → 6
s[4] → “h”
s[1:3] → “li”
s[3:] → “thy”
s[–2] → “h”
s + ‘ toves’ → “slithy toves”

s * 2 → “slithyslithy”
‘t’ in s → True

methods

built-in fns

slicing

o
p

e
ra

to
rs

35

Lists and Strings Go Hand in Hand

>>> text = 'A sentence is just\n a list of words'
>>> words = text.split()
>>> words
['A', 'sentence', 'is', 'just', 'a', 'list', 'of', 'words']
>>> lines = text.split('\n')
>>> lines
['A sentence is just', ' a list of words']
>>> hyphenated = '-'.join(words)
>>> hyphenated
'A-sentence-is-just-a-list-of-words'
>>> hyphenated2 = '-'.join(lines[0].split()+lines[1].split())
>>> hyphenated2
'A-sentence-is-just-a-list-of-words'

text.split(<sep>): return a list of

words in text (separated by <sep>,
or whitespace by default)

<sep>.join(words): concatenate

the items in the list of strings

words, separated by <sep>.

Turns string into a list of words

Turns string into a list of lines

Combines elements with hyphens

Merges 2 lists, combines
elements with hyphens

Tuples (see lesson video)

• Tuples fall between strings and lists

 write them with just commas: 42, 4.0, ‘x’

 often enclosed in parentheses: (42, 4.0, ‘x’)

strings:
immutable sequences

of characters

lists:
mutable sequences

of any objects

tuples*:
immutable sequences

of any objects

Use lists for:

• long sequences

• homogeneous sequences

• variable length sequences

Use tuples for:

• short sequences

• heterogeneous sequences

• fixed length sequences
37

* “tuple” generalizes “pair,” “triple,” “quadruple,” …

