
1

Lecture 8:
Conditionals & Control Flow

(Sections 5.1-5.7)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp Announcements

• Optional 1-on-1 with a staff member to help just you

with course material. Sign up for a slot on CMS under

“SPECIAL: one-on-ones“.

• A1 part A first submission due Mar 5 Fri at 11:59pm

• A1 part B first submission due Mar 8 Mon at 11:59pm

• Conditionals—today’s topic—not allowed in A1

3

Conditionals: If-Statements

Format

if <boolean-expression>:

<statement>

…

<statement>

Example

is there a new high score?

if curr_score > high_score:

high_score = curr_score

print(“New high score!”)

6

Execution:

if ⟨boolean-expression⟩ is true, then execute all of the statements

indented directly underneath (until first non-indented statement)

What are Boolean expressions?

Boolean operations:

if is_student and is_senior:

print(“Hi senior student!”)

Comparison operations:

if num_credits > 24:

print(“Are you serious?”)

is_student = True

is_senior = False

num_credits = 25

Boolean variables:

if is_student:

print(“Hi student!”)

7

Expressions that evaluate to a Boolean value.

What gets printed, Round 1

a = 0

print(a)

8

a = 0

a = a + 1

print(a)

a = 0

if a == 0:

a = a + 1

print(a)

a = 0

if a == 1:

a = a + 1

print(a)

a = 0

if a == 0:

a = a + 1

a = a + 1

print(a)

What gets printed? (Question)

a = 0

if a == 0:

a = a + 1

if a == 0:

a = a + 2

a = a + 1

print(a)

10

A: 0

B: 1

C: 2

D: 3

E: I do not know

http://www.cs.cornell.edu/courses/cs1110/2021sp

2

Conditionals: If-Else-Statements

Format

if <boolean-expression>:

<statement>

…

else:

<statement>

…

Example

new record?

if curr_score > high_score:

print(“New record!”)

else:

print(“Try again next time”)

12

Execution:

if ⟨boolean-expression⟩ is true, then execute statements indented

under if; otherwise execute the statements indented under else

Conditionals: “Control Flow” Statements

if b :

s1 # statement

s3 # statement

if b :

s1

else:

s2

s3

13

b

Statements:
Execute

b Branch Point:
Evaluate & Choose

s3

s3

Flow
Program only

takes one path

during an

execution

(something will

not be executed!)

s1

True

False

s1

True

s2

False

What gets printed, Round 2

a = 0

if a == 0:

a = a + 1

else:

a = a + 2

print(a)

14

a = 0

if a == 1:

a = a + 1

else:

a = a + 2

print(a)

a = 0

if a == 1:

a = a + 1

else:

a = a + 2

a = a + 1

print(a)

a = 0

if a == 1:

a = a + 1

else:

a = a + 1

a = a + 1

a = a + 1

print(a)

Program Flow (car locked, 1)

if determines which statement is executed next

17

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = True
get_in_car(car_locked)

Global Space

Truecar_locked

Program Flow (car locked, 2)

if determines which statement is executed next

18

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = True
get_in_car(car_locked)

Global Space

Truecar_locked

get_in_car 1

car_locked True

Call Frame

Program Flow (car locked, 3)

if determines which statement is executed next

19

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = True
get_in_car(car_locked)

Global Space

Truecar_locked

get_in_car 1 2

car_locked True

Call Frame

3

Program Flow (car locked, 4)

if determines which statement is executed next

20

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = True
get_in_car(car_locked)

Global Space

Truecar_locked

get_in_car 1 2 3

car_locked True

Call Frame

Unlock car!

Program Flow (car locked, 5)

if determines which statement is executed next

21

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = True
get_in_car(car_locked)

Global Space

Truecar_locked

get_in_car 1 2 3

car_locked True

Call Frame

Unlock car!

Open the door.

RETURN None

Program Flow (car not locked, 1)

if determines which statement is executed next

23

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = False
get_in_car(car_locked)

Global Space

Falsecar_locked

Program Flow (car not locked, 2)

if determines which statement is executed next

24

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = False
get_in_car(car_locked)

Global Space

Falsecar_locked

get_in_car 1

car_locked False

Call Frame

Program Flow (car not locked, 3)

if determines which statement is executed next

25

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = False
get_in_car(car_locked)

Global Space

Falsecar_locked

get_in_car 1 3

car_locked False

Call Frame

Program Flow (car not locked, 4)

if determines which statement is executed next

26

def get_in_car(car_locked):
1 if car_locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

car_locked = False
get_in_car(car_locked)

Global Space

Falsecar_locked

get_in_car 1 3

car_locked False

Call Frame

Open the door. RETURN None

4

What does the call frame look like next? (Q)

27

max 1

x 0

y 3

Current call frame:

def max(x,y):

1 if x > y:

2 return x

3 return y

max(0,3)

Program Flow and Variables

Variables created inside if continue to exist past if:

…but are only created if the program actually
executes that line of code

33

a = 0

if a == 0:

b = a + 1

print(b)

Control Flow and Variables (Q1)

def max(x,y):

"""Returns: max of x, y"""

note: code has a bug!

check if x is larger

if x > y:

bigger = x

return bigger

maximum = max(3,0)

Value of maximum?

36

A: 3

B: 0

C: Error!

D: I do not know

Control Flow and Variables (Q2)

Value of maximum?

38

A: 3

B: 0

C: Error!

D: I do not know

def max(x,y):

"""Returns: max of x, y"""

note: code has a bug!

check if x is larger

if x > y:

bigger = x

return bigger

maximum = max(0,3)

Program Flow and Variables

def zero_or_one(a):

if a == 1:

b = 1

else:

b = 0

print(b)

40

make sure that ALL
if branches create

the variable

Conditionals: If-Elif-Else-Statements

Format

if <Boolean expression>:
<statement>
…

elif <Boolean expression>:

<statement>
…

…

else:

<statement>
…

Example

Find the winner

if score1 > score2:

winner = “Player 1”

elif score2 > score1:

winner = “Player 2”

else:

winner = “Players 1 and 2"

41

5

Conditionals: If-Elif-Else-Statements

Format

if <Boolean expression>:
<statement>
…

elif <Boolean expression>:

<statement>
…

…

else:

<statement>
…

Notes on Use

42

• No limit on number of elif

 Must be between if, else

• else is optional

 if-elif by itself is fine

• Booleans checked in order

 Once Python finds a true
<Boolean-expression>, skips
over all the others

 else means all <Boolean-
expression> are false

If-Elif-Else (Question)

a = 2

if a == 2:

a = 3

elif a == 3:

a = 4

print(a)

43

A: 2

B: 3

C: 4

D: I do not know

What gets printed?

What gets printed, Round 3

a = 2

if a == 2:

a = 3

elif a == 3:

a = 4

print(a)

45

a = 2

if a == 2:

a = 3

if a == 3:

a = 4

print(a)

Where is the robot?

• Angle of the robot relative to
the sensor is d degrees, where
d is non-negative

• Robot is in which quadrant?

• To avoid ambiguity, use this
convention:

 1 if 0 ≤ d < 90

 2 if 90 ≤ d < 180

 3 if 180 ≤ d < 270

 4 if 270 ≤ d < 360

48

2 1

43

d

WARNING

Robot Operating in Quadrant 1

Can solve using if-elif-elif… Other options?

Nesting Conditionals

• Separate choices into 2 general categories

• Subdivide each category into
subcategories

• Subdivide each subcategory further…

if <above x-axis> :

if <left of y-axis> :

else:

else:

if <left of y-axis> :

else:

49

2 1

43

d

 1 if 0 ≤ d < 90

 2 if 90 ≤ d < 180

 3 if 180 ≤ d < 270

 4 if 270 ≤ d < 360

See quadrants.py

Program Flow and Testing

Can use print statements
to examine program flow

Put max of x, y in z

if x > y:

z = x

else:

z = y

50

6

Program Flow and Testing

Can use print statements
to examine program flow

'before if’

‘inside if x>y‘

'after if'

Put max of x, y in z

print('before if’)

if x > y:

print(‘inside if x>y’)
z = x

else:

print(‘inside else (x<=y)’)
z = y

print('after if’)

“traces” or
“breadcrumbs”

x must have
been greater

than y

51

Traces (control) and Watches (data)

Put max of x, y in z
print('before if’)
if x > y:

print(‘inside if x>y’)
z = x
print(‘z = ’+str(z))

else:
print(‘inside else (x<=y)’)
z = y
print(‘z = ’+str(z))

print('after if’)

52

TRACES
Trace program flow
What code is being executed?
Place them at the beginning
of a block of code that might
be skipped.

WATCHES
Watch data values
What is the value of a
variable?
Place them after
assignment statements.

