
Lecture 6:
Specifications & Testing

(Sections 4.9, 9.5)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,

S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Revisions made during/after lecture appear in orange

http://www.cs.cornell.edu/courses/cs1110/2021sp

• Download code from lecture and experiment with it—run,
modify, run again, …

• Assignment 1 will be out around Friday

 Will have over a week to do it

 Can choose to work with one partner and together submit one
assignment

 Can revise and resubmit after getting grading feedback

• Starting next week: optional 1-on-1 with a staff member to
help just you with course material. Sign up for a slot on CMS
under “SPECIAL: one-on-ones“.

• Ed Discussions: you can post error msgs but do not post any
amount of your code (answers)

Announcements

4

Recall the Python API

https://docs.python.org/3/library/math.html

Function
name

Possible arguments

What the function
evaluates to

Module

5

• This is a specification

 How to use the function

 Not how to implement it

• Write them as docstrings

https://docs.python.org/3/library/math.html

Anatomy of a Specification

def greet(name):

"""Prints a greeting to person name

followed by conversation starter.

<more details could go here>

name: the person to greet

Precondition: name is a string"""

print('Hello '+name+'!')

print('How are you?')

6

Short description,
followed by blank line

As needed, more detail in
1 (or more) paragraphs

Parameter description

Precondition specifies
assumptions we make
about the arguments

Anatomy of a Specification

def get_campus_num(phone_num):
"""Returns the on-campus version
of a 10-digit phone number.

Returns: str of form "X-XXXX"

phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""
return phone_num[5]+"-"+phone_num[6:10]

7

Short description,
followed by blank line

Information about
the return value

Parameter description

Precondition specifies
assumptions we make
about the arguments

A Precondition Is a Contract

• Precondition is met: The
function will work!

• Precondition not met?
Sorry, no guarantees…

Software bugs occur if:
• Precondition is not

documented properly
• Function use violates the

precondition

>>> get_campus_num(“6072554444”)

‘5-4444’

>>> get_campus_num(“6072531234”)

‘3-1234’

>>> get_campus_num(6072531234)
Traceback (most recent call last):

File "<stdin>", line 1, in<module>

File "/Users/Daisy/lec6examples.py", line 14, in
get_campus_num

return phone_num[5]+"-"+phone_num[6:10]

TypeError: 'int' object is not subscriptable

>>> get_campus_num(“607-255-4444”)

‘5-5-44’
8

Precondition violated:
error message!

Precondition violated:
no error message!

NASA Mars Climate Orbiter

10

Source: NASA

Sources: Wikipedia & CNN

“NASA lost a $125 million
Mars orbiter because a

Lockheed Martin
engineering team used

English units of
measurement while the
agency's team used the

more conventional metric
system for a key

spacecraft operation...”
lost September 23, 1999

Preconditions Make Expectations Explicit

11

In American terms:

Preconditions help assign
blame.

Something went wrong.

Did you use the function wrong?

OR

Was the function implemented/specified wrong?

Basic Terminology

• Bug: an error in a program. Expect them!
 Conceptual & implementation

• Debugging: the process of finding bugs and
removing them

• Testing: the process of analyzing and running a
program, looking for bugs

• Test case: a set of input values, together with
the expected output

12

Get in the habit of writing test cases for a function
from its specification

– even before writing the function itself!

Test cases help you find errors

def vowel_count(word):

"""Returns: number of vowels in word.

word: a string with at least one letter and only letters"""

pass # nothing here yet!

13

Some Test Cases

 vowel_count('Bob’)
Expect: 1

 vowel_count('Aeiuo’)
Expect: 5

 vowel_count('Grrr’)
Expect: 0

More Test Cases

 vowel_count('y’)
Expect: 0? 1?

 vowel_count('Bobo’)
Expect: 1? 2?

Test Cases can help you find errors in the
specification as well as the implementation.

Representative Tests

• Cannot test all inputs

 “Infinite” possibilities

• Limit ourselves to tests
that are representative

 Each test is a significantly
different input

 Every possible input is
similar to one chosen

• An art, not a science

 If easy, never have bugs

 Learn with much practice

14

Representative Tests for
vowel_count(w)

• Word with just one vowel

 For each possible vowel!

• Word with multiple vowels

 Of the same vowel

 Of different vowels

• Word with only vowels

• Word with no vowels

Representative Tests Example

def last_name_first(full_name):

"""Returns: copy of full_name in form <last-name>, <first-name>

full_name: a string with the form <first-name> <last-name>
with one or more blanks between the two names"""

space_index = full_name.index(' ')

first = full_name[:space_index]

last = full_name[space_index+1:]

return last+', '+first

Representative Tests:
• last_name_first(‘Katherine Johnson’) Expects: ‘Johnson, Katherine'

• last_name_first(‘Katherine Johnson’) Expects: ‘Johnson, Katherine'

16

Look at
precondition when
choosing tests

• Right now to test a function, we:

 Start the Python interactive shell

 Import the module with the function

 Call the function several times to see if it works right

• Super time consuming!

 Quit and re-enter python every time we change module

 Type and retype…

• What if we wrote a script to do this ?!

Motivating a Unit Test

17

cornellasserts module

• Contains useful testing functions

• To use:

 Download from course website (one of today’s
lecture files)

 Put in same folder as the files you wish to test

18

def assert_equals(expected, received):
"""Quit program if `expected` and `received` differ"""

• A unit test is a script that tests another module. It:

 Imports the module to be tested (so it can access it)

 Imports cornellasserts module (supports testing)

 Defines one or more test cases that each includes:

• A representative input

• The expected output

 Test cases call a cornellasserts function:

Unit Test: A Special Kind of Script

19

Testing last_name_first(full_name)

import name_phone # The module we want to test

import cornellasserts # Module that supports testing

First test case

result = name_phone.last_name_first(‘Katherine Johnson')

cornellasserts.assert_equals(‘Johnson, Katherine', result)

Second test case

result = name_phone.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

print(‘All tests of the function last_name_first passed’) 20

Actual output
Input

Expected output Quits Python if actual and
expected output not equal

Prints only if
no errors

Organizing your Test Cases

• We often have a lot of test cases

 Common at (good) companies

 Need a way to cleanly organize them

Idea: Bundle all test cases into a single test!

 One high level test for each function you test

 High level test performs all test cases for function

 Also uses some print statements (for feedback)

21

One Test to Rule them All

def test_last_name_first():

"""Calls all the tests for last_name_first"""

print('Testing function last_name_first’)

Test Case 1

result = name.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

Test Case 2

result = name.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

Execution of the testing code

test_last_name_first()

print(‘All tests of the function last_name_first passed’)

No tests happen if you
forget to call the function

22

Still need to import modules
name_phone, cornellasserts

Put all
test

cases
inside
one

function

Debugging with Test Cases (Question)
def last_name_first(full_name):

"""Returns: copy of full_name in the form <last-name>, <first-name>

full_name: has the form <first-name> <last-name>

with one or more blanks between the two names""“

#get index of space after first name

space_index = full_name.index(' ')

#get first name

first = full_name[:space_index]

#get last name

last = full_name[space_index+1:]

#return “<last-name>, <first-name>”

return last+', '+first

• last_name_first('Katherine Johnson’) gives 'Johnson, Katherine'

• last_name_first('Katherine Johnson’) gives ' Johnson, Katherine'

Which line is “wrong”?

A: Line 1

B: Line 2

C: Line 3

D: Line 4

E: I do not know

1

2

3

4

23

How to debug

Do not ask:

“Why doesn’t my code do what I want it to do?”

Instead, ask:

“What is my code doing?”

Two ways to inspect your code:

1. Step through your code, drawing pictures (or use
python tutor if possible)

2. Use print statements to reveal intermediate program
states—variable values

25

Take a look in the python tutor!

def last_name_first(full_name):

<snip out comments for ppt slide>

get index of space

space_index = full_name.index(' ')

get first name

first = full_name[:space_index]

get last name

last = full_name[space_index+1:]

return “<last-name>, <first-name>”

return last+', '+first

last_name_first(“Katherine Johnson”) 26

Pay attention to:
• Code relevant to

the failed test
case

• Code you weren’t
100% sure of as
you wrote it

Using print statement to debug

def last_name_first(full_name):

get index of space

space_index = full_name.index(' ')

print('space_index = '+ str(space_index))

get first name

first = full_name[:space_index]

print('first = '+ first)

get last name

last = full_name[space_index+1:]

print('last = '+ last)

return “<last-name>, <first-name>”

return last+', '+first

27

How do I print this?

Sometimes this is
your only option,
but it does make
a mess of your

code, and
introduces cut-n-

paste errors.

