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• Download code from lecture and experiment with it—run, 
modify, run again, …

• Assignment 1 will be out around Friday

 Will have over a week to do it

 Can choose to work with one partner and together submit one 
assignment

 Can revise and resubmit after getting grading feedback

• Starting next week: optional 1-on-1 with a staff member to 
help just you with course material. Sign up for a slot on CMS 
under “SPECIAL: one-on-ones“.

• Ed Discussions: you can post error msgs but do not post any 
amount of your code (answers)

Announcements
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Recall the Python API

https://docs.python.org/3/library/math.html

Function 
name

Possible arguments

What the function 
evaluates to

Module

5

• This is a specification

 How to use the function

 Not how to implement it

• Write them as docstrings

https://docs.python.org/3/library/math.html


Anatomy of a Specification

def greet(name):

"""Prints a greeting to person name

followed by conversation starter. 

<more details could go here>

name: the person to greet

Precondition: name is a string"""

print('Hello '+name+'!')

print('How are you?')
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Short description,
followed by blank line

As needed, more detail in 
1 (or more) paragraphs

Parameter description

Precondition specifies 
assumptions we make 
about the arguments



Anatomy of a Specification

def get_campus_num(phone_num):
"""Returns the on-campus version 
of a 10-digit phone number.

Returns:  str of form "X-XXXX"

phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""
return phone_num[5]+"-"+phone_num[6:10]
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Short description,
followed by blank line

Information about 
the return value

Parameter description

Precondition specifies 
assumptions we make 
about the arguments



A Precondition Is a Contract

• Precondition is met:  The 
function will work!

• Precondition not met? 
Sorry, no guarantees…

Software bugs occur if:
• Precondition is not 

documented properly
• Function use violates the 

precondition

>>> get_campus_num(“6072554444”)

‘5-4444’

>>> get_campus_num(“6072531234”)

‘3-1234’

>>> get_campus_num(6072531234)
Traceback (most recent call last):

File "<stdin>", line 1, in<module>

File "/Users/Daisy/lec6examples.py", line 14, in 
get_campus_num

return phone_num[5]+"-"+phone_num[6:10]

TypeError: 'int' object is not subscriptable

>>> get_campus_num(“607-255-4444”)

‘5-5-44’
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Precondition violated: 
error message!

Precondition violated: 
no error message!



NASA Mars Climate Orbiter
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Source: NASA

Sources: Wikipedia & CNN

“NASA lost a $125 million 
Mars orbiter because a 

Lockheed Martin 
engineering team used 

English units of 
measurement while the 
agency's team used the 

more conventional metric 
system for a key 

spacecraft operation...”
lost September 23, 1999



Preconditions Make Expectations Explicit
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In American terms:

Preconditions help assign 
blame.

Something went wrong. 

Did you use the function wrong?

OR

Was the function implemented/specified wrong?



Basic Terminology

• Bug:  an error in a program.  Expect them!
 Conceptual & implementation

• Debugging: the process of finding bugs and 
removing them

• Testing: the process of analyzing and running a 
program, looking for bugs

• Test case: a set of input values, together with 
the expected output
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Get in the habit of writing test cases for a function 
from its specification 

– even before writing the function itself!



Test cases help you find errors

def vowel_count(word):

"""Returns: number of vowels in word.

word: a string with at least one letter and only letters"""

pass  # nothing here yet!
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Some Test Cases

 vowel_count('Bob’)
Expect: 1

 vowel_count('Aeiuo’)
Expect: 5

 vowel_count('Grrr’)
Expect: 0

More Test Cases

 vowel_count('y’)
Expect: 0? 1?

 vowel_count('Bobo’)
Expect: 1? 2?

Test Cases can help you find errors in the 
specification as well as the implementation.



Representative Tests

• Cannot test all inputs

 “Infinite” possibilities

• Limit ourselves to tests 
that are representative

 Each test is a significantly 
different input

 Every possible input is 
similar to one chosen

• An art, not a science

 If easy, never have bugs

 Learn with much practice
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Representative Tests for
vowel_count(w)

• Word with just one vowel

 For each possible vowel!

• Word with multiple vowels

 Of the same vowel

 Of different vowels

• Word with only vowels

• Word with no vowels



Representative Tests Example

def last_name_first(full_name):

"""Returns: copy of full_name in form <last-name>, <first-name>

full_name: a string with the form <first-name> <last-name> 
with one or more blanks between the two names"""

space_index = full_name.index(' ')

first = full_name[:space_index]

last  = full_name[space_index+1:]

return last+', '+first

Representative Tests:
• last_name_first(‘Katherine Johnson’)            Expects: ‘Johnson, Katherine'

• last_name_first(‘Katherine       Johnson’)      Expects: ‘Johnson, Katherine'
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Look at 
precondition when 
choosing tests



• Right now to test a function, we:

 Start the Python interactive shell

 Import the module with the function

 Call the function several times to see if it works right

• Super time consuming! 

 Quit and re-enter python every time we change module

 Type and retype…

• What if we wrote a script to do this ?!

Motivating a Unit Test
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cornellasserts module

• Contains useful testing functions

• To use:

 Download from course website (one of today’s 
lecture files)

 Put in same folder as the files you wish to test
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def assert_equals(expected, received):
"""Quit program if `expected` and `received` differ"""

• A unit test is a script that tests another module. It:

 Imports the module to be tested (so it can access it)

 Imports cornellasserts module (supports testing)

 Defines one or more test cases that each includes:

• A representative input

• The expected output

 Test cases call a cornellasserts function:

Unit Test: A Special Kind of Script
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Testing last_name_first(full_name)

import name_phone # The module we want to test

import cornellasserts # Module that supports testing

# First test case

result = name_phone.last_name_first(‘Katherine Johnson')

cornellasserts.assert_equals(‘Johnson, Katherine', result)

# Second test case

result = name_phone.last_name_first('Katherine       Johnson')        

cornellasserts.assert_equals('Johnson, Katherine', result)

print(‘All tests of the function last_name_first passed’) 20

Actual output
Input

Expected output Quits Python if actual and 
expected output not equal

Prints only if 
no errors



Organizing your Test Cases

• We often have a lot of test cases

 Common at (good) companies

 Need a way to cleanly organize them

Idea: Bundle all test cases into a single test!

 One high level test for each function you test

 High level test performs all test cases for function

 Also uses some print statements (for feedback)
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One Test to Rule them All

def test_last_name_first():

"""Calls all the tests for last_name_first"""

print('Testing function last_name_first’)

# Test Case 1

result = name.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

# Test Case 2

result = name.last_name_first('Katherine Johnson')        

cornellasserts.assert_equals('Johnson, Katherine', result)

# Execution of the testing code

test_last_name_first()

print(‘All tests of the function last_name_first passed’)

No tests happen if you 
forget to call the function
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Still need to import modules 
name_phone, cornellasserts

Put all 
test

cases
inside
one 

function



Debugging with Test Cases (Question)
def last_name_first(full_name):

"""Returns: copy of full_name in the form <last-name>, <first-name>

full_name: has the form <first-name> <last-name> 

with one or more blanks between the two names""“

#get index of space after first name

space_index = full_name.index(' ')

#get first name

first = full_name[:space_index]

#get last name

last  = full_name[space_index+1:]

#return “<last-name>, <first-name>”

return last+', '+first

• last_name_first('Katherine Johnson’) gives 'Johnson, Katherine'

• last_name_first('Katherine Johnson’)    gives ' Johnson, Katherine'

Which line is “wrong”?

A: Line 1

B: Line 2

C: Line 3

D: Line 4

E: I do not know

1

2

3

4
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How to debug

Do not ask: 

“Why doesn’t my code do what I want it to do?”

Instead, ask: 

“What is my code doing?”

Two ways to inspect your code:

1. Step through your code, drawing pictures (or use 
python tutor if possible)

2. Use print statements to reveal intermediate program 
states—variable values
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Take a look in the python tutor!

def last_name_first(full_name):

<snip out comments for ppt slide>

# get index of space

space_index = full_name.index(' ')

# get first name

first = full_name[:space_index]

# get last name

last  = full_name[space_index+1:]

# return “<last-name>, <first-name>”

return last+', '+first

last_name_first(“Katherine Johnson”) 26

Pay attention to: 
• Code relevant to 

the failed test 
case

• Code you weren’t 
100% sure of as 
you wrote it



Using print statement to debug

def last_name_first(full_name):

# get index of space

space_index = full_name.index(' ')

print('space_index = '+ str(space_index))

# get first name

first = full_name[:space_index]

print('first = '+ first)

# get last name

last  = full_name[space_index+1:]

print('last = '+ last)

# return “<last-name>, <first-name>”

return last+', '+first
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How do I print this?

Sometimes this is 
your only option, 
but it does make 
a mess of your 

code, and 
introduces cut-n-

paste errors.


