
CS 1110 Spring 2021, Assignment 5:
Looping Back to A3: A Class Act

Updates:

• Wed Apr 28, 6:30pm Ithaca time: Added Section 7.4 so as to mention that sd_utilities_dict.menu_listing()
also needs to be reimplemented. (The skeleton code that was distributed already had a STUDENTS: instruction
to change that function, so this update doesn’t affect those files.)



CS 1110 Spring 2021, Assignment 5:
Looping Back to A3: A Class Act∗

1 Overview
In this assignment, you’ll use our new knowledge about (1) organizing code into classes, (2) dictionaries, and (3)
while-loops to consider alterations/improvements to the A3 code. To reduce workload (it’s been a rough semester),
you’ll only implement some of these changes; we’ve done some for you.

Download the zip file of the files you will need: http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/
assignment5/a5_skeleton.zip.
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2 Not-that-new Rules
1. A major goal of this assignment is to practice implementation with while-loops and dictionaries. Hence, we

reserve the right to assign no credit for code that isn’t fundamentally based on the way we ask you to implement
it, even if the code fulfills the specification.

2. You may not use Python concepts not introduced in lecture or the corresponding materials by the time of this
assignment’s release.

3 Previous Rules That Still Apply. Remember To Acknowledge All
Sources Of Help, Allowed Or Not.

Except you do not need to acknowledge the course staff (although it’s not bad if you do).
∗Authors: Lillian Lee, who was unable to think of a joke involving dictionaries for this assignment’s title. I did once catch a friend

out with the ol’ “Did you know the word ‘gullible’ isn’t in the dictionary?” gambit, though.
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See Sections 1.1-1.3 of Assignment 11, Sections 3.1-3.2 of Assignment 22, and Section 2 item 3 of Assignment 33.

4 Timeline and Deadlines
(a) If you are partnering:4 do so well before submitting.

(b) By 2pm Ithaca time on Wed May 5, submit whatever you have done at that point on to CMS.5

(c) By 11:59pm (Ithaca time) on Wed May 5, make your final submission.6

5 Testing
All the code you’ll write in this assignment should have the same functionality as what you wrote in A3. So, you only
need to check that running showdown_time_a5.py produces the same results as running A3’s showdown_time.py.

6 Tasks
6.1 Consider changing some non-method functions to methods.
Back during A3, you hadn’t learned about methods, so A3’s function showdown_time.showdown_time() did setup
work for Showdown objects that should really be in the Showdown class’s __init__() method. A5’s code corrects
this: see the body of college_a5.Showdown.__init__() and note that showdown_time_a5.py is more compact
because it doesn’t need to define a showdown_time() function.

Another change in the A5 code is that two non-method functions, add_student() and was_accepted(), have
been converted to methods of class college_a5.College, and calls to them have been updated in all files.

But if you examine all the A5 files, you’ll see that no other functions were converted to methods.
File answers_to_code_design_qs.py asks some questions about these design choices. Answer those ques-

tions, placing your responses in the indicated places in the file.

6.2 Use while-loops instead of for-loops where appropriate.
Function process_line() in both file sd_utilities_list.py and sd_utilities_dict.py does important data extraction
to pull college data from a file. Here is its specification, and an implementation from A3 that we’ve updated7 in A5
file sd_utilities_list.py.

1https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf
2https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment2/a2.pdf
3https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment3/a3.pdf
4Reminder: Both parties need to act on CMS in order for the grouping to take effect. See the “How to form a group” instructions at

https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html .
5It is OK if you haven’t finished the assignment yet; the 2pm checkpoint provides you a chance to alert us if any problems arise, and

us to alert you if your submission seems to be missing and of the deadline that day. Since you’ve been warned to submit early, do not
expect that we will accept work that doesn’t make it onto CMS on time, for whatever reason. There are no so-called “slipdays” and there
is no “you get to submit late at the price of a late penalty” policy. Of course, if some special circumstances arise, contact the instructor(s)
immediately.

6And, as usual, perform steps 1-3 in the “Updating, verifying, and documenting assignment submission” section of https://www.cs.
cornell.edu/courses/cs1110/2021sp/resources/cms.html .

7The change: adjust for add_student being changed to a College method.
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1 def process_line(sline, clist):
2 """ Add the tag of sline to the appropriate list (accepted_enrolled,
3 ..., or waitlist) of each College in clist; if sline names a college
4 not already represented in clist, a corresponding College is added
5 to clist.
6

7 Preconditions: sline is a string formatted as if it were a line from a data file
8 described in the CS1110 Spring 2021 A3 handout.
9

10 sline does not have trailing newlines.
11

12 clist is a list of Colleges, possibly empty."""
13

14 tag = int(sline[:sline.index(">>")].strip())
15

16 # name of college student enrolled at
17 senrolled_cn = sline[sline.rindex(":")+1:].strip()
18

19 outcomes = sline[sline.index(">>") + len(">>"):sline.rindex('##')].split("##")
20

21 for outcome in outcomes:
22 oc = outcome.split(":")
23 scname= oc[0].strip() # name of a college supplied by student
24 decision = oc[1].strip()
25 found_scname = False # have not found scname in clist yet
26 found_enrolled = False # have not found enrolled yet (for non-college options)
27 for c in clist:
28 if c.name == scname:
29 found_scname = True
30 # place tag in correct status list for c
31 c.add_student(tag, decision, senrolled_cn)
32 if c.name == senrolled_cn:
33 found_enrolled = True
34 if not found_scname:
35 new_c = college_module.College(scname)
36 new_c.add_student(tag, decision, senrolled_cn)
37 clist.append(new_c)
38 if senrolled_cn == scname:
39 # now the enrolled school is in clist
40 found_enrolled = True
41 if not found_enrolled:
42 # apparently "enrolled" in something they didn't apply to, like "gap year"
43 new_c = college_module.College(senrolled_cn)
44 new_c.add_student(tag, decision, senrolled_cn)
45 clist.append(new_c)

Read the code above carefully to determine how it works. The text below assumes you understand the code well.
The for-loop in lines 27-33 does unnecessary work, because it always continues through the entire list clist

even if a College with name scname and a College with name senrolled_cn are found “early” in the list. Instead,
while-loops are a good mechanism for “early termination” of a loop — where the loop stops as soon as some target
has been found or a certain condition has been met.

Rewrite the body of sd_utilities_list.process_line() as directed in the file to replace the for-loop over
clist with one or more while-loops that don’t go over unnecessary parts of clist.8

8On my computer, there’s a slight but noticeable speed-up compared to the A3 implementation.
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6.2.1 Answer the while-loop question in answers_to_code_design_qs.py.

6.2.2 Optional challenge (just for those interested, no extra credit)

Move as much of the computation out of the for outcome in outcomes for-loop as possible, even if this means
more than one while-loop. Efficiency is best served by having as little nesting of loops as possible.

Hint: the fact that lines 32-33, which are checking for the College that a student enrolled at, are inside the
for outcome in outcomes for-loop is an inelegant hack done for the sake of efficiency:9 since line 27 is already
going through all of clist anyway, I tucked the search for the enrolled college in clist there.

7 Rewrite the showdown utilities to use dictionaries instead of lists
Dictionaries of Colleges, where the keys are College names, turn out to be more convenient than lists of Colleges
for the task A3 addresses.10 To prove this to yourself, we’ve provided you file sd_utilities_dict.py, which is where
you’ll write dictionary-based re-implementations of some functions in file sd_utilities_list.py. We already wrote
sd_utilities_dict.colleges_from_file() for you, to serve as a model.

7.1 Swap in module sd_utilities_dict for sd_utilities_list in showdown_time_a5.py
To make sure that showdown_time_a5.py uses your dictionary-based code rather than your list code, follow the
instruction comment in line 17 of that file to import sd_utilities_dict as sdu instead of module sd_utilities_list.

7.2 Finish a dictionary-based implementation of sd_utilities_dict.process_line()

One advantage you should find: you shouldn’t need any nested loops at all!

7.3 Implement sd_utilities_dict.college_named()

This implementation also becomes simpler and loopless.11

7.4 Revise the implementation of sd_utilities_dict.menu_listing()

Hint: there are at least two ways to do this; try to think of one that is simpler (so that the conversion to a dictionary
is an improvement, not a degradation, of the code).

9Conceptually, what college the student enrolled at has nothing to do with all the other colleges the student applied to.
10Indeed, dictionaries are so useful for many purposes that you might have noticed that we already used them in the code we gave you

for A3 and A4. Take a look if you’re interested in more examples of using dictionaries.
11Indeed, with dictionaries, one might not even bother defining function college_named() at all.
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