
CS 1110 Spring 2021, Assignment 4: Change My View

Updates:

• Thursday Mar 8, 3:45pm Ithaca time: In Fig 2 on page 5, the Post with Gorn numberstring 0.1.1.0.1 (the only
one in the tree authored by “E”) was missing the last digit (i.e., it mistakenly had 0.1.1.0, which was the Gorn
numberstring of its parent Post).



CS 1110 Spring 2021, Assignment 4:
Change My View∗

The files you’ll need are in this zip file:
http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment4/a4_skeleton.zip . We’ve pro-
vided testing functions that (we hope) are sufficient, so you don’t need to submit your own testing code.

Warning: If you are using Python 3.6 or earlier, the testing code might need adjustment.1

1 Motivation: (How) Do Arguments Change People’s Minds?
A 2016 research paper2 by current and former Cornellians begins,

Changing someone’s opinion is arguably one of the most important challenges of social interaction. The
underlying process proves difficult to study: it is hard to know how someone’s opinions are formed and
whether and how someone’s views shift. Fortunately, ChangeMyView, an active community on Reddit,
provides a platform where users present their own opinions and reasoning, invite others to contest them,
and acknowledge when the ensuing discussions change their original views. In this work, we study these
interactions to understand the mechanisms behind persuasion.
We find that persuasive arguments are characterized by interesting patterns of interaction dynamics, such
as participant entry-order and degree of back-and-forth exchange.... [and other results too.]

Figure 1 on page 3 depicts part of a real conversation tree from the r/ChangeMyView (CMV) subreddit where
such a back-and-forth occurred. In about the center of the figure, there is an extended back-and-forth between the
original poster (blue/solid) and someone else (orange/horizontal stripes). On the left-hand side of the figure, we see
that the original poster gave the red/vertical-striped post a “delta” (∆, highlighted by the yellow five-pointed star) to
indicate that that post shifted their thinking. But they did not give a “delta” to any of the orange/horizontal-striped
posts.

Do back-and-forth exchanges correlate with probability of opinion change? Here is a figure from the paper, based
on a large set of CMV conversations. While the overall shape conforms with intuition, the steepness of the decline
between 4 and 5 replies is arguably surprising.3

Recursion is a natural tool for analyzing patterns like back-and-forths in conversation trees. So, what you’re
learning in CS1110 can form the basis for cutting-edge research!

∗Authors: Lillian Lee. Thanks to Elisabeth Finkel and Brynn Szczesniak for comments and figure help. Errors are my own.
1The technical issue is whether dictionary keys are kept in insertion order. Post on Ed Discussions if you cannot use Python 3.7+.
2Chenhao Tan, Vlad Niculae, Cristian Danescu-Niculescu-Mizil, Lillian Lee (2016). Winning arguments: Interaction dynamics and

persuasion strategies in good-faith online discussions. Proc. of WWW, pp. 613-624. https://chenhaot.com/pages/changemyview.html
3One might conclude from this graph, as NPR did, “After three rounds you may as well agree to disagree” (https://www.npr.org/2017/

06/29/534916052/change-my-view-on-reddit-helps-people-challenge-their-own-opinions). But there’s an alternation explanation:
people who go multiple rounds on CMV are not the kind of people who change their minds.
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Figure 1: Portion of the conversation tree posted at https://www.reddit.com/r/changemyview/comments/
3mzc6u/cmv_the_tontine_should_be_legalized_and_made_a/. Arrows connect a post to a reply to that post.
Colors/patterns indicate distinct users; blue/solid is for the original poster starting the discussion.
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2 Rules
2.1 New rules

1. A major goal of this assignment is practice with recursion. Hence we reserve the right to assign no credit for
implementations that aren’t fundamentally based on recursion, even if the code fulfills the specification.
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2. You are allowed to use for-loops4 as long as recursion is the fundamental basis of your implementation.

2.2 Previous rules that still apply
See Sections 1.1-1.3 of Assignment 15, Sections 3.1-3.2 of Assignment 26, and Section 2 item 3 of Assignment 37.

3 Timeline and Deadlines
(a) If you are partnering:8 do so well before submitting.

(b) By 2pm Ithaca time on Tue Apr 13, submit whatever you have done at that point on to CMS.9

(c) By 11:59pm (Ithaca time) on Tue Apr 13, make your final submission.10

4 Representing and Describing Conversation Trees
You’ll be writing functions that would help analyze conversation trees, and in particular back-and-forths along paths
in conversation trees.11

4.1 Tree concepts and main example tree
We’ll use Figure 2 on page 5 as a running simplified example of a conversation tree.

The circles represent all Reddit posts that are “reachable” from a given original post by following replies to posts,
where replies are indicated by arrows in the diagram. The original post is included in the set of “reachable” posts.

The string inside each circle is the username of the author of that post.
We say that a post is a leaf if it has no replies.
Every post in a conversation tree can be considered to be the “original post” of the subtree consisting of the posts

“reachable” from it.

4.2 Gorn numberstrings: convenient notation for referencing posts in a tree
Gorn numbering is a convenient way to refer to particular posts in a tree. In Figure 2, the Gorn numberstring for
each post is to the post’s right.

The scheme has a recursive structure:12

• The original post has Gorn numberstring 0.

• Suppose a particular post has Gorn numberstring s. Then, treating the replies to that post as a list, the reply
at index i in the reply list has the Gorn numberstring created by concatenating “.i” to s.

Looking at Figure 2, for example, the original post (at the top) has Gorn numberstring 0. There are two replies to
the original post; the one authored by “B” has Gorn numberstring 0.0, and the one by “D” has Gorn numberstring
0.1. The two replies to the post by “B” have Gorn numberstrings 0.0.0 and 0.0.1, respectively.

In general, the more “dots” in a Gorn numberstring, the deeper the post is in the tree. And the bigger a “digit”
is in a Gorn numberstring is, the farther to the right it is.

4But not while-loops, if you even know what those are.
5https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf
6https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment2/a2.pdf
7https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment3/a3.pdf
8Reminder: Both parties need to act on CMS in order for the grouping to take effect. See the “How to form a group” instructions at

https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html .
9It is OK if you haven’t finished the assignment yet; the 2pm checkpoint provides you a chance to alert us if any problems arise, and

us to alert you if your submission seems to be missing and of the deadline that day. Since you’ve been warned to submit early, do not
expect that we will accept work that doesn’t make it onto CMS on time, for whatever reason. There are no so-called “slipdays” and there
is no “you get to submit late at the price of a late penalty” policy. Of course, if some special circumstances arise, contact the instructor(s)
immediately.

10And, as usual, perform steps 1-3 in the “Updating, verifying, and documenting assignment submission” section of https://www.cs.
cornell.edu/courses/cs1110/2021sp/resources/cms.html .

11But to keep the scope of this assignment manageable, we will not be implementing a full application like we did in A3.
12As do many concepts regarding trees.
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Figure 2: Main example tree. The function main_example_tree() in file a4_test.py creates this tree for you. The
original post is at the top. Each post has its author’s username inside it. The Gorn numberstring for each post is to
the post’s right.

4.3 Class Post and function main_example_tree()

File post.py defines class Post for representing Reddit posts. But you don’t need to look inside that file; all you
need to know about a Post object’s three attributes is that they are:

tag [non-empty str]: A tag string distinct from all other Posts

author [non-empty str]: username of the author of this Post

replies [list of Posts, possibly empty]: direct replies to this Post, ordered by tag

The function main_example_tree() in file a4_test.py creates our main example tree from Figure 2 for you.
This function sets the tag attribute for each post to its the Gorn numberstring but with the periods removed.

5 Task 1: A Recursive Implementation of num_user_posts()
One sign that a (long) back-and-forth could be happening is a user making multiple posts in the tree.

This motivates the following function for you to implement.

def num_user_posts(post, u):
"""Returns: The number of Posts whose listed author is u, from among all
Posts "reachable" from `post` via `replies` attributes.
The "reachable" Posts are:

* the Post `post` itself
* the Posts in post.replies
* the Posts in the replies list of the Posts in post.replies ... and so on.

Precondition:
post: a Post object.
u: a non-empty string (meant to be a username).

"""
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We’ve written a test function test_num_user_posts() for you in a4_test.py. It’s complicated,13 but you can
understand it as follows.

It contains lines like these:

print("\tTesting 0.1 in main example tree")
post = main_dict["0.1"]
true_num = {"A": 4, "B": 2, "C": 0, "D": 3, "E": 1, "F": 1, "G": 1}

What this means is that for the subtree of our main example tree starting at post 0.1, there are 4 posts authored
by user “A”, 2 by user “B”, and so on. For the full main example tree, the number of posts by each user is given by
this dictionary:

true_num = {"A": 7, "B": 4, "C": 1, "D": 3, "E": 1, "F": 1, "G": 1}
See the testing code for other examples/testcases.

6 Task 2: A Recursive Implementation of user_paths()
We might be interested in conversation paths — chains of replies starting at a particular Post and continuing until
one hits a leaf Post — since back-and-forths occur along such paths.

So, one way to look for back-and-forths is to have an explicit listing of all the paths in a conversation, as strings,
because then we could search for particular patterns in those strings. This motivates the following function for you
to implement.

def user_paths(post):
"""Returns: list of strings, one for each reply-path starting from `post`
and going all the way down to a leaf post (one with no replies to it).
Each string is a comma-separated sequence of authors along the path, in order.

If `post` has no replies, the only string to be included is the one
containing only the author of `post`.

Preconditions: `post` is a Post object.
"""

We’ve written a test function test_user_paths() for you in a4_test.py. Again, it’s complicated, but you can
understand it as follows.

It contains lines like these:

print("\tTesting on main example '0'")
true_paths = ['A, B, C, B',

'A, B, A, A',
'A, D, B',
'A, D, A, D, E',
'A, D, A, F',
'A, D, A, G, A, D, A',
'A, D, A',
'A, D, B']

gives is the list of the strings that your code should output if it were given our main example tree’s original post as
input. (It’ fine for your code to output the same strings in a different order.)

As another example, these lines show the three strings your code should output (although perhaps in a different
order) if it were given the Post at 0.1.1 as input.

13If you have plenty of time, it would be educational to try to understand the testing code, which features dictionaries quite a bit. But
it is definitely OK if you don’t have time for such an exercise.
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print("\tTesting on '0.1.1', three paths out")
result = a4.user_paths(main_dict["0.1.1"])
true_paths = ['A, D, E',

'A, F',
'A, G, A, D, A']

See the testing code for other examples/testcases.

7 Task 3: A Recursive Implementation of bnf_starts_here()
Here, again, is our main example tree:

We observe that there are exactly 7 back-and-forths of (exactly) length 3:
0 → 0.0 → 0.0.1 between authors “A” and “B”
0 → 0.1 → 0.1.2 between “A” and “D”
0.1.1.2.0 → 0.1.1.2.0.0 → 0.1.1.2.0.0.0 between “A” and “D”
0.0 → 0.0.0 → 0.0.0.0 between “B” and “C”
0.1 → 0.1.1 → 0.1.1.0 between “D” and “A”
0.1.1 → 0.1.1.2 → 0.1.1.2.0 between “A” and “G”

But we don’t want to say that there is a length-3 back-and-forth starting at 0 between “A” and “D”. This is
because the “ADA”-labeled sequence 0 → 0.1 → 0.1.1 can be continued with the “D”-authored post 0.1.1.0; so
we’d rather say instead that there is a length-4 back-and-forth starting at 0 between “A” and “D”.

On the other hand, to make this assignment easier for you, we do say that there’s a back-and-forth of length 3
between “D” and “A” starting at 0.1, even though this back-and-forth is part of a longer one between “A” and “D”
starting “one post above”, at 0.

There are also length-2 back-and-forths in the figure, such as 0.0 → 0.0.1 between “B” and “A” (where 0.0.1)
is not a leaf), and 0.1 → 0.1.3 between “D” and “B” (where 0.1.3 is a leaf.)

But similarly to before, we would not say 0 → 0.0 is an back-and-forth of length 2 between “A” and “B”,
because we’d say that actually there’s a back-and-forth of length 3 between those two authors starting at 0, namely,
0 → 0.0 → 0.0.1.
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7.1 All k > 2-length back-and-forths in our main example
They are all listed in file a4_test.py from the A4 zipfile, lines 226-249 — just focus on the strings (in red) below:

true_list = [
# length-2 back-and-forths
["B", "A", gnlist2plist(["0.0", "0.0.1"], main_dict)],
["C", "B", gnlist2plist(["0.0.0", "0.0.0.0"], main_dict)],
["D", "E", gnlist2plist(["0.1.1.0", "0.1.1.0.0"], main_dict)],
["A", "D", gnlist2plist(["0.1.1", "0.1.1.0"], main_dict)],
["A", "F", gnlist2plist(["0.1.1", "0.1.1.1"], main_dict)],
["D", "A", gnlist2plist(["0.1.1.2.0.0", "0.1.1.2.0.0.0"], main_dict)],
["G", "A", gnlist2plist(["0.1.1.2", "0.1.1.2.0"], main_dict)],
["D", "B", gnlist2plist(["0.1", "0.1.0"], main_dict)],
["D", "A", gnlist2plist(["0.1", "0.1.2"], main_dict)],
["D", "B", gnlist2plist(["0.1", "0.1.3"], main_dict)],

# length-3 back-and-forths
["A", "B", gnlist2plist(["0", "0.0", "0.0.1"], main_dict)],
["A", "D", gnlist2plist(["0", "0.1", "0.1.2"], main_dict)],
["A", "D", gnlist2plist(["0.1.1.2.0", "0.1.1.2.0.0","0.1.1.2.0.0.0"],

main_dict)],
["B", "C", gnlist2plist(["0.0", "0.0.0", "0.0.0.0"], main_dict)],
["D", "A", gnlist2plist(["0.1", "0.1.1", "0.1.1.0"], main_dict)],
["A", "G", gnlist2plist(["0.1.1", "0.1.1.2", "0.1.1.2.0"], main_dict)],
# length-4 back-and-forth
["A", "D", gnlist2plist(["0", "0.1", "0.1.1", "0.1.1.0"], main_dict)],

]

7.1.1 More formal, recursive definition

Starting at a particular post P with author x, we say that a back-and-forth of length k ≥ 1 between x and (different)
author y starts at P if (and only if) there is a reply chain starting at P where the author order is x, y, x, y, . . .,
and where if there is a reply at the kth item in the back-and-forth, it would not constitute a continuation of the
back-and-forth — in other words, the back-and-forth cannot be extended beyond k.

We can re-formulate this definition recursively!
A back-and-forth of length k between user u1 and (different) user u2 starts at a post P if (and only if) P was

written by u1 and ...

• Case: k = 1: ... there is no reply to P written by u2. (This includes the case where P has no replies at all).14

• Case: k ≥ 2: ... there is a back-and-forth of length k − 1 between u2 and u1 starting at some reply to P .

7.1.2 Function specification

Here is the specification for the function you are to implement using recursion effectively.

def bnf_starts_here(post, u1, u2, k):
"""If, ignoring the parent of `post`, a back-and-forth of length k (and not
longer) between users u1 and u2 starts at Post `post`,
returns a list of Post objects in that back-and-forth, in top-down order.
(If there is more than one such back-and-forth, this function returns one of
them.)

Otherwise, returns False.

Preconditions:
14Contrariwise, no back-and-forth of length k = 1 between u1 and u2 starts at P if P wasn’t written by u1 or if there’s a reply to P

written by u2.
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post: a Post object.
u1 and u2: usernames: non-empty strings that are distinct.
k: int >= 1."""

We’ve written a test function test_bnf_starts_here() for you in a4_test.py. It looks complicated, but you
should look at the lines that set up true_list: these lines show you all the back-and-forths in our main example
tree.

7.1.3 Optional: If you want to do additional testing

If you want to add additional testing — such as if you are having trouble getting any of the test cases to pass — you
may want to add your own small-scale tests.

Here’s an example of what we recommend: set up your own test function, like this:

def my_own_private_testfn():
print("**** Running my own private test function!")

[main_tree, main_dict] = main_example_tree()

result = bnf_starts_here(main_dict["0"], "A", "D", 2) # replace with whatever test you like
if result:

print("\tHere's the length-2 back-and-forth I found at 0 for A and D") # change as appropriate
for p in result:

print(p.tag + " by " + p.author)
else:

print("No such back-and-forth here!")
print("**** Done with my own private test function!")

Then add a call to this test function early in the testing code, maybe right after line 337:

337 if __name__ == '__main__':
338 my_own_private_test_fn() #<-- you added this
339

340 test_num_user_posts()
341 test_user_paths()
342 test_bnf_starts_here()

8 Advice (Beyond What We Mentioned in the Previous Assignment)
If you find yourself making modification after modification but not making progress, save your work, but try starting
over, on a blank sheet of paper. A fresh start can sometimes work wonders.

9 Code Cleanup and Pre-Submission Checklist
See the relevant sections in Assignment 115.

15https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf
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