CS 1110 Spring 2021, Assignment 3: Harvard Beats Yale, 29-29*

Besides providing practice with objects, lists, and for-loops, this assignment gives you experience with larger code bodies and more complexly inter-relating object structures. The most novel aspect of the work will probably not be the writing of the functions (novel though that may be), but understanding these structures.

You will not be submitting formal test cases (though you should do as much testing as you can). We supply you with some testing files and sample outputs, and have an intermediate submission deadline that involves you working out the desired output for a simple example.

Download the zip file of the files you will need: http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment3/a3_skeleton.zip.

1 Exploring a Real-World College-Decisions Dataset

1.1 Motivation

Most of you were probably interested in the college application and admission process at some point. We can explore the outcomes of the 2019-2020 college-admissions cycle by looking at real survey data self-submitted by college applicants that is available¹ at a post to the subreddit r/ApplyingToCollege². While this data has the usual issues of (significant) sample bias, noisy data entry, and so on, we hope you find it amusing and/or a challenge to your developing programming skills to complete a program that answers the following type of "showdown"³ question:

According to (biased and noisy and just from the year 2020 but still real-world) data, when a student gets into both college X and college Y, which are they more likely to go to?

Objects, lists, for-loops, and dictionaries are great tools for this task.

Contents

1	Exploring a Real-World College-Decisions Dataset 1.1 Motivation	1 1
2	New Rules	2
3	Previous Rules That Still Apply	2
4	Timeline and Deadlines	2
5	Task 5.1 Goal 5.2 College-Data Files 5.2.1 Format 5.2.2 Small test case: small_test1.txt 5.3 Specifications And Calling Structure For The Functions You Need To Complete	5 5 5
6	Classes College and Showdown 6.1 How to Test 6.2 Grand Finale *Authors: Lillian Lee	

¹Sharing policy: "You may share and adapt this dataset if you give credit 'r/ApplyingToCollege/' [sic] and do not use the dataset for any commercial purposes (CC BY-SA 4.0)"

²https://www.reddit.com/r/ApplyingToCollege/comments/gucq7r/ra2c_2020_census_results_class_of_2024/

³Thanks to consultant Aliva Das for coming up with this terminology.

Advice
7.1 Plan your program logic on paper beforehand. (We needed t
7.2 Avoiding bugs; debugging hints
7.3 Navigating complex files
7.4 Worked examples of for-loops and object manipulation
· · · · · · · · · · · · · · · · · · ·

2 New Rules

- 1. A major goal of this assignment is practice with for-loops. Hence, for each of the functions we have you implement, we reserve the right to assign no credit for code that isn't fundamentally based on an explicit forloop if we asked for one, or that doesn't use the kind of for-loop in the way we ask for, even if the code fulfills the specification.
- 2. You may not use Python concepts not introduced in lecture or the corresponding materials by the time of this assignment's release.

This implies you may *not* use dictionaries in your code in this assignment.⁴

3. Unless the specification says otherwise, any function you complete must not change any objects given as arguments. Changing a user's objects without notifying them is bad practice.⁵

3 Previous Rules That Still Apply

See Sections 1.1-1.3 of Assignment 1^6 and Sections 3.1-3.2 of Assignment 2^7 .

4 Timeline and Deadlines

- (a) If you are partnering:⁸ do so *before* any submissions, where the first checkpoint is 2pm Ithaca time on Wed Mar 24.
- (b) By 2pm Ithaca time on Wed Mar 24, submit whatever you have done on answer_to_testcase_q.txt to CMS.⁹ It is OK if you haven't finished working on it yet.¹⁰
- (c) By 11:59pm (Ithaca time) on Wed Mar 24, you must have made a first submission of answer_to_testcase_q.txt in order to be allowed to submit the other A3 files.¹¹ Again perform the aforementioned steps 1-3. You don't have to have submitted any of the other files at that point. Whether or not you make this deadline will be a small factor in your grade for this assignment.

Groups cannot be formed or changed after submitting.¹²

- (d) Some time the next day, we will change the due date on CMS to Sun Mar 28.
- (e) By 2pm Ithaca time on Sun Mar 28, submit whatever you have done at that point on *all* A3 files to CMS, and perform the aforementioned steps 1-3. It is OK if you haven't finished them yet.

⁵One might go as far as to say it's ... objectionable?

⁷https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment2/a2.pdf

 $^{^{4}}$ Indeed, iteration over lists is not as Python-specific as the use of dictionaries is, so we really want you to practice with lists as much as possible in this assignment, as the more generic data type. We do acknowledge that dictionaries are useful for our task, and applied them ourselves in the code we provided you; but we want students to have all the concepts they need for A3 at release time.

⁶https://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf

 $^{^{8}\}mbox{Reminder:}$ Both parties need to act on CMS in order for the grouping to take effect. See the "How to form a group" instructions at https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html .

⁹And, as usual, perform steps 1-3 in the "Updating, verifying, and documenting assignment submission" section of https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html .

 $^{^{10}}$ The 2pm checkpoints provide you a chance to alert us if any problems arise. Since you've been warned to submit early, do not expect that we will accept work that doesn't make it onto CMS on time, for whatever reason. There are no so-called "slipdays" and there is no "you get to submit late at the price of a late penalty" policy. Of course, if some special circumstances arise, contact the instructor(s) immediately.

 $^{^{11}\}mathrm{We}$ want you to have worked out a test case ahead of time.

 $^{^{12}\}mathrm{Except}$ for "group divorce" situations; see the course Policies page.

- (f) By 11:59pm (Ithaca time) on Sun Mar 28, make your final submission of all files, and perform the aforementioned steps 1-3.
- (g) We will release solutions by Monday the 29th, since prelim 1 is on Tuesday the 30th.

5 Task

5.1 Goal

When you complete the code skeletons, you'll be able to run Python script showdown_time.py to choose a colleges datafile and query it about pairs of colleges.

We've provided sample outputs in the files in directory sample_runs, and you should consider these as representing test cases: does your code reproduce that output?

For example, here are the some of the contents of real_data_output.txt.¹³ (We'll explain the first line later.) The colleges are in reverse order of number of applicants in the data.

small_test is set to False, show_sd_internals set to True

```
[1jl2@utopia solution] python showdown_time.py
What college-info file in directory "data" should I use?
1: small_test1.txt
2: small_cornell_and_suny_test.txt
3: a2c_census2020_processed.txt
other: some other file in the "data" directory
Default is 1.
Your choice? 3
Here are the available college_names according to your menu_names() function.
0: UC-Los_Angeles 1: UC-Berkeley 2: Cornell_U
                                                  3: Stanford_U
                                                                   4: Harvard_U
                                                                                    5: Yale_U
                                                                                                6: UC-San_Diego
[...]
123: Howard_U
              124: USouth_Carolina
                                        125: Smith_College 126: Pitzer_College 127: Skidmore_College
128: Bryn_Mawr_College
[...]
204: Wheaton_College
                        205: United_States_Military_Academy_at_West_Point
                                                                            206: UArkansas 207: Brigham_Young_U
[...]
229: A_college_or_university_outside_of_the_United_States
230: None; I am taking a gap year/semester and will enroll in college in 2021.
231: A college or university not listed.
                                            232: None; I_do_not_have_plans_to_attend_college_as_of_now.
233: Community_College 234: Liberty_U
Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 2 4
FYI, here is the internal showdown data
Cornell U vs. Harvard U
accepted at both: 383,404,453,548,888,1464,1731,1896,1902,1952,2665,1903
accepted at both, enrolled at Cornell_U: 1903
accepted at both, enrolled at Harvard_U: 383,404,453,548,888,1731,1902,1952,2665
Cornell_U vs. Harvard_U
Number of students accepted at both: 12
Number of such students who enrolled at one of them: 10
% who chose Cornell_U over Harvard_U: 10.0
% who chose Harvard_U over Cornell_U: 90.0
One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 20 4
FYI, here is the internal showdown data
Massachusetts_Institute_of_Technology vs. Harvard_U
accepted at both: 128,221,404,453,472,888,1665,1801,1842,2189,2399,2901,1707,1896,2244,2375
accepted at both, enrolled at Massachusetts_Institute_of_Technology: 1707,1896,2244,2375
```

¹³Except we've had to do some manual line-wrapping.

accepted at both, enrolled at Harvard_U: 128,221,404,453,472,888,1665,1801,1842,2399 Massachusetts_Institute_of_Technology vs. Harvard_U Number of students accepted at both: 16 Number of such students who enrolled at one of them: 14 % who chose Massachusetts_Institute_of_Technology over Harvard_U: 28.57 % who chose Harvard_U over Massachusetts_Institute_of_Technology: 71.43 One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 3 4 FYI, here is the internal showdown data Stanford_U vs. Harvard_U accepted at both: $\hookrightarrow \quad 670, 678, 771, 956, 1174, 1358, 1616, 1665, 1801, 1902, 1903, 2244, 2375, 2665, 2711, 52, 441, 1579, 1762, 1771, 2901, 1902, 1903, 1$ accepted at both, enrolled at Stanford_U: 52,441,1579,1762,1771,2901 accepted at both, enrolled at Harvard_U: 670,678,771,956,1174,1358,1616,1665,1801,1902,2665,2711 Stanford_U vs. Harvard_U Number of students accepted at both: 21 Number of such students who enrolled at one of them: 18 % who chose Stanford_U over Harvard_U: 33.33 % who chose Harvard_U over Stanford_U: 66.67 One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 0 6 FYI, here is the internal showdown data UC-Los_Angeles vs. UC-San_Diego accepted at both: accepted at both, enrolled at UC-Los_Angeles: $\rightarrow \quad 51, 81, 277, 290, 317, 341, 455, 459, 538, 596, 631, 675, 698, 761, 777, 797, 808, 855, 872, 884, 911, 935, 952, 973, 1016, 1035, 1036, 1043, 538, 1043, 10$ accepted at both, enrolled at UC-San_Diego: 193,1475 UC-Los_Angeles vs. UC-San_Diego Number of students accepted at both: 237 Number of such students who enrolled at one of them: 76 % who chose UC-Los_Angeles over UC-San_Diego: 97.37 % who chose UC-San_Diego over UC-Los_Angeles: 2.63 One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 8 18 FYI, here is the internal showdown data Columbia_U vs. New_York_U accepted at both: $\hookrightarrow \quad 191, 435, 506, 548, 612, 781, 1174, 1579, 1670, 2031, 2232, 2572, 2699, 2762, 2763, 2975, 3015, 530, 800, 1044, 2462, 24$ accepted at both, enrolled at Columbia_U: 530,800,1044,2462 accepted at both, enrolled at New_York_U: 781 Columbia_U vs. New_York_U Number of students accepted at both: 21 Number of such students who enrolled at one of them: 5 % who chose Columbia_U over New_York_U: 80.0 % who chose New_York_U over Columbia_U: 20.0 One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): 11 → 74 FYI, here is the internal showdown data UMichigan-Ann_Arbor vs. The_Ohio_State_U accepted at both: 214,216,1059,1315,1995,2002,2131,2381,2564,3031,753,2012,2067,2158 accepted at both, enrolled at UMichigan-Ann_Arbor: 753,2012,2067,2158

accepted at both, enrolled at The_Ohio_State_U:

UMichigan-Ann_Arbor vs. The_Ohio_State_U Number of students accepted at both: 14 Number of such students who enrolled at one of them: 4 % who chose UMichigan-Ann_Arbor over The_Ohio_State_U: 100.0 % who chose The_Ohio_State_U over UMichigan-Ann_Arbor: 0.0

One more round? Pick two numbers from the list of college names, separated by spaces (or 'q' to quit): q Bye for now!

5.2 College-Data Files

5.2.1 Format

In the files supplying our data, each line represents the application choices and outcomes for a student.¹⁴ Sample:

3 >> Boston_U : Accepted ## Northeastern_U : Accepted ## Northwestern_U : Accepted ## enr : Northwestern_U

The number before the >> is the *tag* for the student. Each **##** marker is preceded by a colon-separated pair consisting of a college name and an outcome. After the last **##** is the string "enr" and the college enrolled at. So, in the example above, student with tag 3 got into all three schools they applied to, and enrolled at Northeastern_U.¹⁵

Other outcomes in the data are "Rejected" or "Wait-listed".¹⁶

Assume there are no repeated tag numbers (although they may not be consecutive or in sorted order), and each student enrolled in only one "college".¹⁷

5.2.2 Small test case: small_test1.txt

For any two colleges X and Y, if you know which students — among those who were accepted to both and chose to enroll at either X or Y — enrolled at X, then you can compute what percent chose X over Y, and what percent chose Y over X.

Check your understanding by computing these percentages for the last few college pairs in the output shown in Section 5.1.

Demonstrate your understanding — and hence work out a test case — of the kind of computations you will need to do by filling out answer to testcase q.txt.

That is, here are the complete contents of college-data file small_test1.txt:

```
11 >> A : Accepted ## B : Rejected ## D : Accepted ## E : Accepted ## enr : A
```

10 >> A : Accepted ## B : Rejected ## D : Accepted ## enr : D

```
20 >> A : Accepted ## B : Rejected ## D: Accepted ## E : Accepted ## enr : A
```

21 >> A : Wait-listed ## E : Accepted ## enr : E

Assuming that file is the data source, open file answer_to_testcase_q.txt in Atom and replace the "???"s in that file with the correct answers, following the pattern established in Section 5.1.

For reference, here are the relevant parts of answer_to_testcase_q.txt:

```
A vs. D
accepted at both: ???
accepted at both, enrolled at A: ???
accepted at both, enrolled at D: ???
A vs. D
Number of students accepted at both: ???
Number of such students who enrolled at one of them: ???
% who chose A over D: ???
% who chose D over A: ???
```

¹⁴Thanks to CS/IS Professor Jon Kleinberg for providing us with an initial pre-processed version of the A2C 2020 Census results. The numbers for the top-ten enrolled-at colleges according to the pre-processed version are close to but not quite consistent with those given at https://www.reddit.com/r/ApplyingToCollege/comments/gucq7r/ra2c_2020_census_results_class_of_2024/. This may be because of different ways of matching variant spellings of college names, or different ways of handling waitlisted students.

¹⁵Do note that the data in a2c_census2020_processed.txt has not been completely cleaned. But for the purposes of this assignment, don't clean it further. For example, "California_Polytechnic_State_U-San_Luis_Obsipo" should really be "California_Polytechnic_State_U-San_Luis_Obsipo", but just leave it alone.

¹⁶We converted "Accepted;_Wait-listed and "Rejected;_Wait-listed" to "Accepted" and "Rejected", respectively. We discarded lines containing an outcome "Accepted; Rejected".

¹⁷We treat "A_college_or_university_not_listed", "None; I_am_taking_a_gap_year/semester_and_will_enroll_in_college_in_2021.", "California_State_U_(All)" and the like as if each were a unique college.

5.3 Specifications And Calling Structure For The Functions You Need To Complete

The most important, top-level function is in file showdown_time.py:

1

2

з

4

5

6

7

9

1

2

з

4

 $\mathbf{5}$

1

2

3

4

5

6

7

```
def showdown_time(c1name, c2name, colleges):
    """Return Showdown object representing the showdown comparison between the
    College with name `c1name` and the College wih name c2name from data source
    `colleges`.
    Returns None if `colleges` doesn't contain a college named c1name or c2name.
    """
```

Computing showdown information requires knowing which students were accepted to the colleges in question. Hence, you should (and are required) to use, and hence complete, this helper function, in file college.py:

```
def was_accepted(tag, c):
    """Returns True if the student with tag number `tag` was accepted at
    College c; returns False otherwise.
    (For A3, a waitlisted student is not considered accepted even if they
    eventually made it off the waitlist.)
    Preconditions:
        tag is an int.
        c is a College object (not None).
    """
```

Also, two of the arguments to the main function are the names of the colleges to compare, given as strings. The following helper function returns the actual College object that a name refers to, so we can look up its data. All the available College objects are assumed to be stored in a list so we can access them. In file sd_utilities.py:

Someone who wants to use our main function showdown_time() has to specify which colleges to compare. But there are many ways the user could specify a college (e.g., "Cornell" vs. "Cornell University" vs. "CU") as well as misspell a canonical name should there be one. To minimize user data-entry mistakes, we'll present the user with a phone-menu-like listing of the options ("Para Cornell, oprima dos"¹⁸). In file sd_utilities.py:

```
The numbered-name items are separated by a tab (\t).

Example: for the list colleges_from_file('small_test1.txt'), the output

is

'0: B\t1: A\t2: D\t3: E'

which prints out as

0: B 1: A 2: D 3: E

There is no newline ('\n') or whitespace at the end of the returned string.
```

¹⁸Thanks to consultants Dylan Castillo and Ben Rosenberg for the Spanish check, and no thanks to Google Translate.

```
s Precondition: `colleges` is a list of Colleges (possibly empty.)
"""
pass # STUDENTS: implement this. Your solution must be based on a for-loop
# using the `range()` function.
# Be careful about not having your output end with a tab
```

It would be reasonable to work on these functions in the following order: was_accepted(), college_named(), menu_listing(), showdown_time(); but there are other reasonable orderings, too.

6 Classes College and Showdown

What are these College and Showdown objects? They're used to store the info we need in a convenient way, and file college.py defines these classes. We haven't discussed classes in detail yet, but here's all you need to know about these two classes.

- A College object has five attributes (see college.py for more specifics):
- name, like "Cornell_U".
- accepted_enrolled: list of tags (which are ints, no repeats) for the applicants who were accepted by this College and enrolled there.
- accepted_not_enrolled: similar, except its for the applicants who were accepted by this college but enrolled somewhere else.
- rejected: similar, but for the rejected applicants.
- waitlisted: similar, but for the waitlisted applicants.

A new College object is created with a call like College ("A"); all the applicant lists start out empty.

Showdown objects represent a comparison between two colleges, and have the following attributes, according to college.py:

```
c1: A College object.
c2: A different College object. (Although we don't check that c1 != c2).
accepted_at_both: list of tags of students accepted by both c1 and c2.
enrolled_at_c1: list of tags of students *accepted at both* who enrolled at c1.
enrolled_at_c2: list of tags of students *accepted at both* who enrolled at c2.
```

A Showdown object is created with a call like Showdown(x, y, xylist, xlist, ylist), where x and y are College objects, and xylist, xlist, and ylist are *meant* to be the correct lists for the new Showdown object's accepted_at_both, enrolled_at_c1, and enrolled_at_c2 attributes.

6.1 How to Test

It is fine and expected that you will write menu_listing() and then showdown_time() *last*, and that you'll test by comparing their output against the outputs we provided you in sample_runs.

For testing the other functions and also, to some degree, menu_listing(), you can run the Python script helper_tests.py.

6.2 Grand Finale

There are two variables in showdown_time.py meant to control how it behaves.

When you've completed all the code to your satisfaction, change those lines to set the first variables to False. Then, you can run Python on showdown_time.py and reproduce the results in the files in sample_runs, or do some exploring of the data in a2c_census2020_processed.txt. Let us know what you find interesting or "ex/acceptional"!

7 Advice

7.1 Plan your program logic on paper beforehand. (We needed to!)

The idea is to get the logic of "when to put which objects where" straight, and outlined in natural language, straight before trying to translate your logic into Python.

First advantage: you can separate out logical mistakes from programming errors.

Second advantage: we course staff will be able to help you significantly faster if we can first see your humanlanguage outline of your plan first.

7.2 Avoiding bugs; debugging hints

- 1. Many bugs are caused by unintentionally changing the semantics of a variable. Pick informative variable names and/or comment what your intents are. Make sure you update variable values correctly when the situation changes.
- 2. Section 13.10 of the text ("...especially if you are working on a hard bug") is good advice.
- 3. Only implement a little bit at a time and test incessantly. It's normal to let many tests fail for code you haven't implemented yet, as long as what you *are* working on is getting closer to functioning.¹⁹

You don't want an uncaught bug early one messing up a lot of things downstream.

Add temporary print statement to check your partial progress as necessary.

4. You may be able to use Python Tutor to visualize what your code is doing.

7.3 Navigating complex files

1. Atom lets you "fold up" parts of code, such as function bodies, to temporarily hide them. Look for a little down-pointing arrow-head in the lefthand "gutter" of a code window, and click on it.

7.4 Worked examples of for-loops and object manipulation

For inspiration and models, besides the lecture materials, there are solved A3s from previous semesters in the "Archive" section of our assignment advice and archive $page^{20}$ and solutions to previous exam questions at our exams $page^{21}$

Function add_student() that we completed for you college.py is an example of handling College objects.

¹⁹(Ha.)

²⁰https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/doing-assignments.html

²¹https://www.cs.cornell.edu/courses/cs1110/2021sp/exams

A For a2c_census2020_processed.txt: Alphabetical Mapping of Colleges to Menu Numbers

We provide this alphabetized list of colleges from a2c_census2020_processed.txt together with their menu numbers to make it easier to look up colleges of interest. For instance, you can easily see that to compare Harvard against Harvey Mudd, you should enter the menu-item numbers 4 and 88 when running showdown_time.py. Cornell is number 3. (Meaning it was the 3rd most-applied-to college!)

But: warning: it is possible that your computer might assign different menu numbers than what is listed here, as ties in number of applications might be broken differently than the way Prof. Lee's did.

231: A_college_or_university_not_listed. 229: A_college_or_university_outside_of_the_United_States 67: American_U 49: Amherst_College 68: Arizona_State_U 169: Auburn_U 147: Babson_College 73: Barnard_College 121: Bates_College 118: Baylor_U 193: Bentley_U 228: Bob_Jones_U 42: Boston_College 26: Boston_U 69: Bowdoin_College 116: Brandeis_U 207: Brigham_Young_U 9: Brown_U 128: Bryn_Mawr_College 138: Bucknell U 70: Cal_Poly_Pomona 47: California_Institute_of_Technology 32: California_Polytechnic_State_U-San_Luis_Obsipo 65: California_State_U_(All) 99: Carleton_College 23: Carnegie_Mellon_U 35: Case_Western_Reserve_U 142: Chapman_U 227: Claflin_Unversity 87: Claremont_McKenna_College 192: Clarkson_U 145: Clemson_U 63: Colby_College 110: Colgate_U 208: College_of_Charleston 157: College_of_the_Holy_Cross 167: Colorado_College 109: Colorado_School_of_Mines 150: Colorado_State_U 8: Columbia_U 233: Community_College 2: Cornell_U 27: Dartmouth_College 141: Davidson_College 75: Drexel_U 13: Duke U 174: Elon_U 209: Embry_Riddle 170: Emerson_College 30: Emory_U 183: Fairfield_U 224: Fisk_U 181: Florida_Institute_of_Technology 98: Florida_State_U 43: Fordham_U 144: Franklin_and_Marshall_College 53: George_Washington_U 41: Georgetown_U 19: Georgia_Institute_of_Technology

201: Gettysburg_College 182: Gonzaga_U 78: Grinnell_College 211: Gustavus_Adolphus_College 105: Hamilton_College 4: Harvard_U 88: Harvey_Mudd_College 103: Haverford_College 123: Howard_U 196: Illinois_Institute_of_Technology 86: Indiana_U-Bloomington 159: Iowa_State_U 155: James_Madison_U 28: Johns_Hopkins_U 219: Kansas_State_U 106: Kenyon_College 131: Lafayette_College 93: Lehigh_U 168: Lewis_and_Clark_College 234: Liberty_U 115: Loyola_Marymount_U 130: Macalester_College 20: Massachusetts_Institute_of_Technology 97: McGill_U 119: Miami U (OH) 96: Michigan_State_U 80: Middlebury_College 191: Mississippi_State_U 215: Morehouse_College 143: Mount_Holyoke_College 217: New_Mexico_State_U 223: New_Mexico_Tech 18: New_York_U 230: None;_I_am_taking_a_gap_year/semester_and_will_enroll_in_college_i 232: None;_I_do_not_have_plans_to_attend_college_as_of_now. 92: North_Carolina_State_U 12: Northeastern_U 14: Northwestern_U 82: Notre_Dame_U 107: Oberlin_College 114: Occidental_College 166: Ohio_U 212: Oklahoma_State_U 152: Oregon_State_U 50: Penn_State 160: Pepperdine_U 126: Pitzer_College 44: Pomona_College 10: Princeton_U 186: Providence_College 38: Purdue U 108: Reed_College 79: Rensselaer_Polytechnic_Institute 188: Rhode_Island_School_of_Design 180: Rhodes_College 29: Rice U 81: Rochester_Institute_of_Technology 161: Rose-Hulman_Institute_of_Technology 48: Rutgers_U

46: SUNYs 175: Saint_Louis_U 66: San_Diego_State_U 85: San_Jose_State_U 76: Santa_Clara_U 214: Sarah_Lawrence_College 122: Scripps_College 177: Seattle_U 225: Sewanee 127: Skidmore_College 125: Smith College 156: Southern_Methodist_U 189: Spelman_College 202: St._John's_College 158: St._Olaf_College 3: Stanford_U 95: Stevens_Institute_of_Technology 45: Swarthmore_College 100: Syracuse_U 111: Temple_U 71: Texas_A&M_U 185: Texas_Christian_U 190: Texas_Tech_U 194: The_Cooper_Union_for_the_Advancement_of_Science_and_Art 124: USouth_Carolina 74: The_Ohio_State_U 112: The_UAlabama 171: Trinity_College 179: Trinity_U 36: Tufts_U 54: Tulane_U 220: Tuskegee_U 203: UAlabama-Birmingham 221: UAlaska_Fairbanks 113: UArizona 206: UArkansas 1: UC-Berkeley 22: UC-Davis 17: UC-Irvine 0: UC-Los_Angeles 137: UC-Merced 104: UC-Riverside 6: UC-San_Diego 16: UC-Santa_Barbara 39: UC-Santa_Cruz 24: UChicago 173: UCincinnati 91: UColorado-Boulder 102: UConnecticut 135: UDelaware 153: UDenver 62: UFlorida 89: UGeorgia 172: UHawaii_at_Manoa 34: UIllinois_at_Urbana-Champaign 139: UIowa 178: UKansas 187: UKentucky 163: UMaine 59: UMaryland-College_Park

57: UMassachusetts-Amherst 84: UMiami 11: UMichigan-Ann_Arbor 52: UMinnesota-Twin_Cities 199: UMissouri-Columbia 216: UMontana 176: UNebraska-Lincoln 195: UNevada-Reno 210: UNew_Hampshire 198: UNew_Mexico 40: UNorth_Carolina_at_Chapel_Hill 226: UNorth_Dakota 60: UNotre_Dame 149: UOklahoma 120: UOregon 7: UPennsylvania 58: UPittsburgh 162: UPortland 197: URhode_Island 129: URichmond 56: URochester 154: USan_Diego 133: USan_Francisco 222: USouth Dakota 15: USouthern_California 151: UTennessee 33: UTexas-Austin 94: UTexas_at_Dallas 140: UUtah 136: UVermont 31: UVirginia 37: UWashington 55: UWisconsin 218: UWyoming 132: U_at_Buffalo 205: United_States_Military_Academy_at_West_Point 148: Uthe_Pacific 21: Vanderbilt_U 83: Vassar_College 90: Villanova_U 146: Virginia_Commonwealth_U 77: Virginia_Tech 117: Wake_Forest_U 134: Washington_&_Lee_U 164: Washington_State_U 25: Washington_U_in_St._Louis 72: Wellesley_College 64: Wesleyan_U 200: West_Virginia_U 204: Wheaton_College 165: Whitman_College 213: Whitworth_U 61: William_&_Mary 51: Williams_College 101: Worcester_Polytechnic_Institute 184: Xavier_U

5: Yale_U