
CS 1110 Spring 2021, Assignment 1: Zoom or Room?

Updates to Assignment 1
The assignment itself, with corrections marked in orange, begins on the next page. On this “page 0”, we also

document the time, location, and nature of the updates, in reverse chronological order,

Updates:

• Friday Feb 26, 3:30pm: Typo on pg. 8: Function test_from_to() test_tag_endi() contains at least two bad
test cases.



CS 1110 Spring 2021, Assignment 1: Write your own CourseGrab
(Get open/closed/waitlist status from the registrar’s live webpages)∗

http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.

pdfhttp://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf

Navigating links in this pdf. Text in any shade of blue in this document is a clickable link.

Updates. Monitor announcements on Canvas1.2 (Non-Canvas access at http://www.cs.cornell.edu/courses/
cs1110/2021sp/announcements/archive.html.)

Contents
1 Rules 1

1.1 Working with a Partner (You Can Have At Most One) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What Collaborations Are (Dis-)Allowed And How To Document Them . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Python You Are NOT Allowed To Use In This Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Timeline and Deadlines 2
2.1 Can we revise in response to grader feedback? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Task Overview: Extracting Roster Information 3
3.1 The files you need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Desired/required function-call structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Your task: the one-line description (full descriptions in section 4 and section 5) . . . . . . . . . . . . . . . . . . 6

4 Collaboration/Academic Integrity Policy Acknowledgment 6

5 Iterative Development (How to Work Through the Assignment) 7

6 Grand Finale 9

7 Code Cleanup 9

8 Pre-Submission Checklist and What to Submit 9

1 Rules
1.1 Working with a Partner (You Can Have At Most One)
You may work alone or with exactly one other person.

If you are partnering, the two of you must officially form a group on CMS BEFORE submitting.
which will link your submission “portals”. More details in Section 2.

Atom has a “Teletype” feature3 enabling real-time collaboration. Staff members Jude Javillo, Jonathan Su, and
Emily Parker recommend it for its “Google Docs”-like feel, but observe “one thing to note is that the person who

∗Authors: Lillian Lee, with some instructions derived from previous assignments by Walker White and David Gries and formatting
initially created by Stephen McDowell. Title idea from Aliva Das.

1https://canvas.cornell.edu/courses/25213/announcements
2Throughout, we include both footnotes and clickable links because the clickable links may not work for all readers. The URL in the

footnotes can be copy-pasted into a browser as a last resort.
3https://teletype.atom.io/

1

http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf
http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1.pdf
https://canvas.cornell.edu/courses/25213/announcements
http://www.cs.cornell.edu/courses/cs1110/2021sp/announcements/archive.html
http://www.cs.cornell.edu/courses/cs1110/2021sp/announcements/archive.html
https://teletype.atom.io/
https://canvas.cornell.edu/courses/25213/announcements
https://teletype.atom.io/


shares the link for teletype will have the updated version but their partner won’t be able to save it”. Staff member
Ben Rosenberg also recommends repl.it4 .

If your partnership dissolves, see our Collaboration Policies’ item on the “group divorce scenario5”.

1.2 What Collaborations Are (Dis-)Allowed And How To Document Them
The full collaboration policy is on the course Academic Integrity page6. Read it.

As our advice on working with a partner7 says, “We strongly advise against splitting the work; rather, the two
of you should work together on all parts, or you, personally, won’t get all the practice the assignment is meant to
provide.”

1.3 Python You Are NOT Allowed To Use In This Assignment
You may not use, and do not need, any Python constructs not yet covered by the labs, lectures, or posted lecture
slides by the time this assignment was released.8 We want you to demonstrate your skills with the Python we have
taught so far.

2 Timeline and Deadlines
1. If you are partnering: well before Friday, Mar 5, follow our “How to form a group on CMS” instructions9. Both

parties need to act on CMS10 in order for the grouping to take effect.
Once partnered on CMS, only one of you need submit on the partnership’s behalf, but you can both submit
multiple times. Whichever of you submits the latest before the deadline, that last submission will be what we
grade for your group.

2. By 2pm Ithaca time on Friday, Mar 5, submit whatever you have done on a1_first.py and policy_acknowledgment.py
to CMS11. Then, do steps 2 and 3 of our “Updating, verifying, and documenting assignment submission” in-
structions. It is OK if you haven’t finished yet; CMS lets you update submissions until the final deadline.

3. By 11:59pm Ithaca time on Friday, Mar 5, make your final submission of a1_first.py and policy_acknowledgment.py,
and save the prove-you-submitted screenshots.

4. Sometime on Saturday, Mar 6, we will transfer the CMS groupings you made in Deadline 1 to a “new” CMS
assignment for a1_second.py, and open it for submission. (This implies that you cannot change partners for
a1_second.py.)

5. By 2pm Ithaca time on Monday, Mar 8, submit whatever you have done on a1_second.py to CMS, and save
the prove-you-submitted screenshots. It is OK if you haven’t finished yet; CMS lets you update submissions
until the final deadline.

6. By 11:59pm Ithaca time on Monday, Mar 8, make your final submission of a1_second.py, and save the prove-
you-submitted screenshots.

The 2pm checkpoints on Friday, Mar 5 and Monday, Mar 8 provide you a chance to alert us during business
hours of any submission problems. Since you’ve been warned to submit early, do not expect that we will
accept work that doesn’t make it onto CMS on time for whatever reason, including server delays stemming
from many other students trying to submit at the same time as you.12

Of course, if some special circumstances arise, contact the instructor(s) immediately.
4https://repl.it/
5https://bit.ly/3sxzJdV
6http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html
7https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/doing-assignments.html
8So, no ifs, no loops, etc., even if for some reason you know what those are.
9https://bit.ly/3uyZDQr

10https://cmsx.cs.cornell.edu/web/auth/
11https://cmsx.cs.cornell.edu/web/auth/
12There are no so-called “slipdays” and there is no “you get to submit late at the price of a late penalty” policy.

2

https://repl.it/
https://bit.ly/3sxzJdV
http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html
https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/doing-assignments.html
https://bit.ly/3uyZDQr
https://cmsx.cs.cornell.edu/web/auth/
https://cmsx.cs.cornell.edu/web/auth/
http://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html
http://www.cs.cornell.edu/courses/cs1110/2021sp/resources/cms.html
https://repl.it/
https://bit.ly/3sxzJdV
http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html
https://www.cs.cornell.edu/courses/cs1110/2021sp/resources/doing-assignments.html
https://bit.ly/3uyZDQr
https://cmsx.cs.cornell.edu/web/auth/
https://cmsx.cs.cornell.edu/web/auth/


2.1 Can we revise in response to grader feedback?
Stay focused on hitting the deadlines listed above. But yes, as long as you submit something for each of the three
files by the given deadlines, you will have the chance to revise and resubmit, possibly multiple times! We’ll talk more
about this later.

3 Task Overview: Extracting Roster Information
When you look at a Cornell course roster page such as https://classes.cornell.edu/browse/roster/SP21/
class/CS/1110, depicted in Figure 1, you can see which of the course’s lectures and sections are open, closed,
waitlisted, and so on; and, as of the pandemic, course listings now include modality, like “online” or “in person”. It
would be nice to have a more efficient way to look up such information and a more compact presentation.

In this assignment, you’ll write functions that will plug into a program we wrote. When done, you’ll be able to
run that program, query_roster.py, on live Cornell Spring 2021 roster pages to have interactions like what’s shown
in Figure 2. (So when you’re finished with A1, compare what query_roster.py outputs for you against what you
see in this figure.)

The key to this process is that many webpages are really just big collections of special strings your browser
displays using formatting information in those strings. You can view the underlying string for a given webpage by
using the “view source” functionality of your browser.13

Figure 3 shows an excerpt of the source (underlying string) for the CS 1110 roster webpage. Green boxes
highlight the locations of the information needed by query_roster.py: the “component” (lecture vs. section) is in
the data-ssr-component box, the lecture/section number is in the data-section box, and so on.

3.1 The files you need
Create a new directory on your computer. Download and unzip into that directory this zip file.The contents are:

policy_acknowledgment.py
a1_first.py
a1_second.py
query_roster.py
cornellasserts.py
roster_pages, a folder of some downloaded roster webpages, as html strings.

We’ve written the entire program query_roster.py for you! But it won’t work as expected yet, because it makes
calls functions in file a1_second.py that are currently just “skeletons”: just the function-definition headers and
docstring specifications you’ll need — don’t change those — plus function bodies containing only the do-nothing
command pass.

We’ve also given you a partially-completed testing file a1_first.py It has some purposely erroneous test
cases in it; more on that later.

3.2 Desired/required function-call structure
• The program in file query_roster.py repeatedly calls make_url() and report_section() in module a1_second.

• Function from_to in a1_second.py should/must call “helper” function tag_endi(), potentially multiple
times.14

• Function report_section() in a1_second.py should/must call “helper” function from_to(), explicitly or
implicitly, potentially multiple times.

• The testing functions in a1_first.py should each call the corresponding functions from a1_second.py multiple
times.

You are allowed to write your own helper functions, but if you do, you must (a) provide clear specification
docstrings for them, and (b) provide adequate testing for them in a1_first.py .

13Chrome: View Developer View Source . Firefox: Tools Web Developer Page Source . Safari: Develop Show Page Source . Or, right-click
or ctrl-click in the browser window often brings up a menu with an option to view page source.

14Such calls can be implicit if you use another helper function you write that calls from_to() .

3

https://classes.cornell.edu/browse/roster/SP21/class/CS/1110
https://classes.cornell.edu/browse/roster/SP21/class/CS/1110
http://www.cs.cornell.edu/courses/cs1110/2021sp/assignments/assignment1/a1_skeletons.zip


Figure 1: Screenshot of portion of the roster webpage for CS 1110 as of Feb 2021.

4



[ljl2@ushuaia assignment1] python query_roster.py
Enter "S" or "L".
"S": run on local roster-simulation files on your computer.

(Limited, but avoids hundreds of CS 1110 students bothering the roster webserver frequently/simultaneously.
Also useful if you have trouble accessing the Internet.)

"L": go ahead and use the live Cornell roster webpages.
Your choice? L
Enter a subject and course number, separated by a space, to look up in the Spring 2021 roster
(just hit return for "CS 1110").
Or, type "q" to quit:

Here are all components I found:
Lec 001 Open Online
Dis 201 Closed In person
Dis 202 Closed In person
Dis 203 Open In person
Dis 204 Open In person
Dis 205 Closed In person
Dis 206 Closed Online
Dis 207 Open Online
Dis 208 Closed Online
Dis 209 Open Online
Dis 210 Closed Online
Dis 211 Closed Online
Dis 212 Open Online
Dis 213 Open Online
Dis 214 Open Online
Dis 215 Closed Online
Dis 216 Open Online
Dis 217 Open Online
......

Enter another course name, like "CS 1110", or "q" to quit: INFO 1300

Here are all components I found:
Lec 001 Open Distance learning-asynchronous
Dis 201 Closed Online
Dis 202 Open Online
......

Enter another course name, like "CS 1110", or "q" to quit: q
[ljl2@ushuaia assignment1]

Figure 2: An interaction with our program when the plug-in functions are correctly implemented.

5



class="tooltip-iws" data-toggle="popover" data-content="Add to Favorites"
aria-label="Add to Favorites" href="#"
data-class-nbr="10426" data-ssr-component="LEC" data-section="001" ></a></span></p></li>

<li class="consent">&nbsp; </li><li class="meeting-pattern"><h5 class="hidden">
Meeting Pattern</h5><ul class="meetings
meetings-first"><li class="dates"><span class="pattern"><span
class="pattern-only"><span class="tooltip-iws" data-toggle="popover" data-content="Tues
&amp; Thurs">TR</span></span><time class="time">9:05am - 9:55am</time></span><a
class="facility-search" href="http://www.cornell.edu/about/maps/?q=Virtual#CUmap"
target="_blank" rel="nofollow">Online Meeting</a></li><li class="date-range"> Feb 8 -
May 14, 2021 </li><li class="instructors"><h5 class="hidden">Instructors</h5><p><span
class="tooltip-iws" data-toggle="popover" data-content="Kit-Yee Daisy Fan (kdf4)">Fan,
K</span></p><p><span class="tooltip-iws" data-toggle="popover" data-content="Lillian
Lee (ljl2)">Lee, L</span></p></li></ul></li><li class="open-status"><span
class="tooltip-iws" data-toggle="popover" data-content="Open"> [...]
class="fa fa-circle open-status-open" ></span></span></li><li class="notes" title="Additional
Information"><h5 class="hidden">Additional Information</h5><p> [...]
class="instr-mode">Instruction Mode: Online</span> <br> 364 seats are reserved for

freshmen and sophomores during pre-enroll. Additional seats will open up during
add/drop.
[...]

Figure 3: The source (html) string for the CS 1110 roster webpage.

3.3 Your task: the one-line description (full descriptions in section 4 and section 5)
Fix and complete files a1_first.py and a1_second.py, following all directions given as comments starting
“STUDENTS” in the .py files and all directions in this document.

4 Collaboration/Academic Integrity Policy Acknowledgment
Read our Collaboration and Academic Integrity Policies15. The aim of this exercise is that you understand points
(1)-(4).

Open policy_acknowledgment.py. Insert your NetID(s) and the date into the header comments.
Paste into the file, between the first set of three double-quotes and the series of dots, the lines from the collabo-

ration policy starting with “Until all students’ . . .” and ending with “acknowledge the course staff”.
Change all the pronouns appropriately so that the subjects of all the relevant sentences are in the first person,

not the second person (implicit or explicit). In other words, “you” statements and imperatives should be changed to
“I” or “we” statements.

Below the series of dots but above the second set of three double-quotes, write down any questions you have
about policies on the aforementioned webpage; we would be more than happy to clarify anything you are wondering
about! (OK to not have any questions).

Save the file and submit it.

15http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html

6

http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html
http://www.cs.cornell.edu/courses/cs1110/2021sp/policies/cs1110integrity.html


5 Iterative Development (How to Work Through the Assignment)
We said in subsection 3.2 that there are dependencies between the functions you will write. The wisest course of
action: write and test the basic functions first before moving on to the functions that build on that basis.

Hence, develop and test the functions in a1_second.py one at a time, in order. For each function, do
the following.

1. Carefully read the specification for the function. Backquotes are used to visually distinguish variable
names, like this:  ̀tag ̀. We don’t always use angle brackets the way we do in lecture because html strings
often themselves contain angle brackets.

1 def make_url(part1, part2, part3):
2 """Returns: new string of the form part1/part2/part3

3 Preconditions: part1, part2, and part3 are all nonempty strings.

4 The intent, although not a precondition, is:
5 part1 is like "https://classes.cornell.edu/browse/roster/SP21/class"
6 part2 is like "CS"
7 part3 is like "1110"
8 and the returned string would be
9 https://classes.cornell.edu/browse/roster/SP21/class/CS/1110

10 """

1 def tag_endi(tag, text):
2 """Returns: the index of the end of the first occurrence of `tag` in `text`

3 Preconditions:
4 `text` [str]: contains at least one instance of `tag`
5 `tag` [str]: length > 0

6 Examples:
7 tag_endi("+", "ab+c") --> 2
8 tag_endi('<name "intro">','faith <name "intro"> hope charity') --> 19
9 """

1 def from_to(start, end, text):
2 """Returns substring of `text` occurring between the 1st occurrence of
3 `start` and the first following occurrence of `end`.

4 Preconditions:
5 `text` [str]: length > 0.
6 `start` and `end` [str]: both non-empty and occur in `text`.
7 At least one `end` appears after a `start` in `text`.

8 Examples:
9 from_to('+', '!', '+a+b+c!+4def+5') ---> 'a+b+c'

10 from_to('(', ')', 'good job :) good example foo(0) ') --> '0'
11 t = '<li style="color:purple">python</li><span>the < is intentional</span>'
12 from_to('<span>','</span>', t') ---> "the < is intentional"
13 """

7



1 def report_section(s):
2 """Returns string of the form
3 '<component type> <section number> <open status> <mode>'.
4 The component type, mode, and open status should have the first letter
5 capitalized, and all other letters lower-case. The section number should be
6 exactly as in s with respect to capitalization, spacing, and so on.

7 See a1_first.test_report_section() for examples.

8 Preconditions:
9 `s` is a string of the following form, where CT, SN, OS, and MODE

10 indicates word(s) without quotation marks or angle brackets ("<" or ">"),
11 and "..." stands for anything:

12 ...data-ssr-component="CT" ... data-section="SN" ...
13 open-status-OS" ... class="instr-mode">Instruction Mode: MODE</span> ...

14 BUT where the following substrings occur exactly once:
15 'data-ssr-component="'
16 'data-section="'
17 'open-status-'
18 'class="instr-mode">Instruction Mode:'
19 """

2. Fix the bad test cases in a1_first.py. We’ve given you a number of test cases, so you have examples to
look at, but planted bad ones to ensure you carefully read the given function specifications.
We guarantee that:

• there are no (intentional) errors in the “expected answers” in test_make_url() or test_report_section().
• Function test_from_to() test_tag_endi() contains at least two bad test cases.16

Here’s how to fix:

• For a test case where the “expected answer” is wrong, add the comment # ... STUDENT-FIXED ERROR
... under the comment that numbers the test case; comment out the incorrect assert_equals call; and
add the fixed call below, like this:

# 0. first input has multiple spaces in it
# ... STUDENT-FIXED ERROR ... <--- added
result = a1_second.some_wonderful_function('s t a', 'st')
# cornellasserts.assert_equals('', result) <--- commented out
cornellasserts.assert_equals('a', result) <--- fix added

• For a test case where the situation should not have been tested, add the comment # ... STUDENT-DELETED
CASE ... under the comment that numbers the test case; add a comment giving your reasoning, and
comment out the entire test case, like this:

# 1110. first input is an int
# ... STUDENT-DELETED CASE ... <--- added
# ... REASON: violates precondition <--- added
# result = a1_second.brilliant_function(2, 3) <--- commented out
# cornellasserts.assert_equals('3', result) <--- commented out

16To be clear: maybe there are just two, maybe there are three, maybe there are more. . .

8



3. Add missing representative test cases for that function in the appropriate place in test_tag_endi()
and test_from_to().17 You want cases that represent valid inputs, but exhibit different aspects of the problem
the function is trying to solve, so that using your suite of test cases can catch different types of bugs.
For each test case you add, include in a comment a short justification of what the test case represents.

4. Write the function body in a1_second.py.18

5. Run python on the script a1_first.py.19 If errors are revealed with the function you’re currently working
on, fix them and re-test.

6 Grand Finale
If you’re convinced that your code is correct, you should be able to run Python on the file query_roster.py20 and
reproduce the interaction in Figure 2!

7 Code Cleanup
Before submitting, ensure your code obeys the following.21

• Lines are short enough (~80 characters) that horizontal scrolling is not necessary.

• You have indented with spaces, not tabs.

• Functions are separated from each other by at least two blank lines.

• You have removed any debugging print statements.

• You have removed all pass statements.

• You have removed “instruction” comments, such as “# IMPLEMENT THIS FUNCTION”.

• If you added any helper functions, these have good docstring specifications and you have put sufficient testing
code for your functions in a1_second.py .

8 Pre-Submission Checklist and What to Submit
The files to submit to CMS22 are policy_acknowledgment.py, a1_first.py, and a1_second.py.23

Make sure the following are all true before you submit.

1. You’ve changed the header comments in all files to list the entire set of people and sources that contributed to
the code.

2. You (and your partner) have included your NetIDs in the header of all files.

3. The date in the header comments has been changed to when the files were last edited.
17We have constructed enough test cases for you for test_make_url() and test_report_section(), so you don’t need to add any more.

You’re welcome.
18Sanity checks:
• If the specification says to return something, you need a return statement returning something of the correct type.
• Double-check that if the instructions said to call a certain helper, that you did indeed use that helper function.
• The functions in query_roster.py do some string processing, so you may find it useful to look in that file for inspiration/examples.

But it is definitely not necessary to do so, and if you do choose to check that file out, don’t be intimidated by the Python in there
that you don’t know (yet).

19At the command prompt, not the >>> Python interactive prompt, enter python a1_first.py .
20At the command-shell prompt, enter python query_roster.py .
21These requirements up speed up the process of reading/grading hundreds of files.
22https://cmsx.cs.cornell.edu/web/auth/
23Do not submit any files with the extension/suffix .pyc. It will help to set the preferences in your operating system so that extensions

always appear.

9

https://cmsx.cs.cornell.edu/web/auth/
https://cmsx.cs.cornell.edu/web/auth/


4. You have set your CMS notifications settings to receive email regarding grade changes, and regarding group
invitations.

5. (reminder) If working with a partner, you have grouped on CMS. (One has invited on CMS, and the other has
accepted on CMS.)

10

http://www.cs.cornell.edu/Projects/CMS/userdoc/notifications.html

	Rules
	Working with a Partner (You Can Have At Most One)
	What Collaborations Are (Dis-)Allowed And How To Document Them
	Python You Are NOT Allowed To Use In This Assignment

	Timeline and Deadlines
	Can we revise in response to grader feedback?

	Task Overview: Extracting Roster Information
	The files you need
	Desired/required function-call structure
	Your task: the one-line description (full descriptions in section 4 and section 5)

	Collaboration/Academic Integrity Policy Acknowledgment
	Iterative Development (How to Work Through the Assignment)
	Grand Finale
	Code Cleanup
	Pre-Submission Checklist and What to Submit

