Lecture 15:

Recursion
(Sections 5.8-5.10)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

No-laptop [NGEGHEEN

Zonhe on your

I
Announcements eft

e Prelim 1 feedback expected by Sunday
e Read §5.8-5.10 (if you haven’t done so already)

Thinking about upcoming changes

We know everyone is stressed out ® As situation and
planning evolve we’ll keep you posted

Lecture: recording is available. If you want to avoid lecture
room even before break, it’'s ok. You can view recording
instead.

Labs: exercises online. We're trying to work out ways to
provide interactive help somehow. Will need combination of
technologies and platforms

Office/consulting hours: ditto

How will future exams work? This is difficult to deal with. In
discussion inside and outside CS to come up with solution.

Please use Piazza! Good way to get answers to clarification
guestions.

Recursion

Recursive Function:
A function that calls 1tself

(see also Recursive Function)

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,
and simpler... until 1t looks like the simple case)

Russian Dolls!

What is the simple case
that can be solved easily?

A: The case where the doll has a seam
and another doll inside of it.

B: The case where the doll has no seam
and no doll inside of it.

C: A & B are both simple

D: 1 do not know

e d

"Catherine"

Import russian

d1 = russian.Doll("Dmitry", None)
d2 = russian.Doll("Catherine", d1)

Global Space
dli| idi
"Dritry” d2 | id2

Lol

nName

Russian Dolls!

Doll

n Dmit r,yll

hasSeam| False

innerDoll | None

1d2

Nname

Doll

"Catherine"

hasSeam| True
innerDoll | id1

def open_doll(d):
""Input: a Russian Doll
Opens the Russian Doll d ™
print("My name is "+ d.name)
If d.hasSeam:
Inner = d.innerDoll
open_doll(inner)
else:
print(“That's it!")

idx Doll

name

hasSeam

innerDoll

Examples

Russian Dolls
Blast Off!
Factorial
Deblank

Blast Off!

blast_off(5) # must be a non-negative int

— N W I O

BLAST OFF!

blast_off(0)
BLAST OFF!

10

Blast Off!

def blast_off(n):
""Input: a non-negative int
Counts down from n to Blast-Offl

if (n==0):
print("BLAST OFF!")
else:
print(n)
blast_off(n-1)

12

A Mathematical Example: Factorial

 Non-recursive definition:
n'=n Xn-1 X ... X2 X1]
=n(n-1 X ... X2 X 1)

 Recursive definition:
n!=n(n-1)! forn>0 Recursive case
0!'=1 Base case

What happens 1f there 1s no base case?

Recursion

13

Factorial as a Recursive Function

def factorial(n): * n! =n (n-1)!
"“Returns: factorial of n. | 0l =1

Pre: n= 0 an int"™"
If n==0:

- return Base case(s)

return n*factorial(n-1) | Recursive case

What happens 1f there 1s no base case?

Recursion

Recursion vs Iteration

Recursion is provably equivalent to iteration
= Jteration includes for-loop and while-loop (later)

* Anything can do 1n one, can do in the other
But some things are easier with recursion

* And some things are easier with iteration

Will not teach you when to choose recursion

= That’s for upper level courses

We just want you to understand the technique

15

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

16

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1

data 2

Y

Solve Problem P

Y

Solve Problem P

17

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1

data 2

Y

Solve Problem P

G

Y

Solve Problem P

/

Combine Answer!

18

Divide and Conquer Example

Count the number of 'e's in a string:

19

Divide and Conquer Example

Count the number of 'e's in a string:

20

Divide and Conquer Example

Count the number of 'e's in a string:

ple|n|nje
- 4

\/

21

Divide and Conquer

Goal: Solve really big problem P
Idea: Split into stmpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task

3. Decide how to combine your work

22

Three Steps for Divide and Conquer

1. Decide what to do on “small” data

= Some data cannot be broken up

= Have to compute this answer directly

2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers

= Assume the smaller answers are correct

* Combining them should give bigger answer

23

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins
1. Handle small data
If s=="

" return 0

elif len(s) ==1:

- return1if s[0] =="¢e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

25

Divide and Conquer Example

def num_es(s):
""Returns; # of 'e'sins
1. Handle small data
If s=="

" return 0

elif len(s) == 1:

- return1if s[0] =="¢e' else 0

“Short-cut” for

if s[0] =="e":
return 1

else:
return 0

27

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins

2. Break into two parts s[0] s|1:]
left = num_es(s[0])
right = num_es(s[1:]) p c|nj|n

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins

3. Combine the result
return left+right

s[0] s|l:
p n
0 2

29

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins
1. Handle small data)
Ifs=="

'~ return 0 > { Base Case]
elif len(s) ==1:

return1ifs[0] =='e'else 0 _/

2. Break into two parts)

left = num_es(s[0])

right = num_es(s[1]) > Recursive
Case

3. Combine the result
return left+right),

Exercise: Remove Blanks from a String

def deblank(s):
‘ """Returns: s but with its blanks removed""

1. Decide what to do on “small” data

= If 1t is the empty string, nothing to do

If s=="
" returns

= [f 1t 1s a single character, delete 1t if a blank

ifs=="" #Thereis a space here
" return™ # Empty string
else:

' returns

31

Exercise: Remove Blanks from a String

def deblank(s):

2. Decide how to break i1t up

left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

32

Putting it All Together

def deblank(s):
""Returns: s w/o blanks

if 5 ==")

\ return s

Handl 11 dat }
elif len(s) ==1: >£ andle small data

return"if s[0] ==""else s Y

[eft:deblank(S[O]) [Break the dat }
right = deblank(s[1:]) e

return left+right L Combine answers J

33

Putting it All Together

def deblank(s):
""Returns: s w/o blanks
ifs=="

' returns
elif len(s) ==1:
return"if s[0] ==""else s

left = deblank(s[0])
right = deblank(s[1])

return left+right

J
N

>{ Base Case }

4

Recursive
Case

|

34

Following the Recursion

C

deblank a b C
deblank deblank| a

stop (base case)

deblank

a

g

W

deblank

stop (base case)

W

35

Breaking it up (1)

deblank

a b C

deblank

36

Breaking it up (2)

deblank a b
deblank | a b
a deblank b

37

Breaking it up (3)

deblank a b
deblank | a b

a deblank b
deblank | b

38

Breaking it up (4)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

39

Breaking it up (5)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | ¢

40

Breaking it up (6)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | ¢

41

Combining Left+Right (1)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | ¢

42

Combining Left+Right (2)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

X deblank | ¢

+e

Combining Left+Right (3)

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

X deblank | ¢

43

Combining Left+Right (4)

deblank a b C

deblank | a b C

a deblank b C

X deblank | b c é b
b deblank C é b
X deblank | c é C
: =) [

Combining Left+Right (5)

deblank a b C

deblank | a b C

a deblank b C

X deblank | b C

b deblank C

X deblank | ¢

46

Combining Left+Right (6)

deblank a b C

X |deblank | a b C

a deblank b C

X deblank | b C

b deblank C

X deblank | ¢

47

Combining Left+Right (7)

deblank a b C

X |deblank | a b C

a deblank b C

X deblank | b C

b deblank C

X deblank | ¢

48

