nell.edu/courses/cs1110/2020sp |

or

e
RN

Lecture &:

Conditionals & Control Flow
(Sections 5.1-5.7)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

No-laptop [IiitontaN
Announcements zonhe on -‘
[el

your left

e Optional 1-on-1 with a staff member to help just you
with course material. Sign up for a slot on CMS under

“SPECIAL: one-on-ones”.

e Al first submission due Feb 19 Wedn at 11:59pm

Review: Objects are referenced

- Must call constructor function to create object
- Object variable stores ID of object
- Multiple variables can reference same object

Swap (Question)

ﬁmport shapes \ What 1s in p.X at the end of this code?
p = shapes.Point3(1,2,3) Al
g = shapes.Point3(3,4,5) B: 2
: C:3
]d etf f\iljvip_X(p. P: D: I don’t know
2 P.X=0.X
3 gx=t
id1 id2
&wap_X(p. q) / Point3 v
Global Space <1 I3
p|idl v|2 v[4

q|id2 z|3 z|5

Swap (Solution)

ﬁmport shapes \ What 1s in p.X at the end of this code?
p = shapes.Point3(1,2,3) Al
g = shapes.Point3(3,4,5) B: 2

C:3 CORRECT

def swap_x(p, q): D: I don’t know

1 t=pXx
2 P.X=0Q.X
3 gx=t 1
1 id2
&wap_X(p. q) / Point3 v
Global Space <1 3
X
p|idl v|2 v[4
q|id2 z|3 z|5

Swap (Explanation)

ﬁ mport shapes

p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

def swap_x(p, 9):
1 t=pXx

2 P.X=0.X

s gx=t

\\SWGP_X(p. q) /

Global Space

p |idl

q|id2

7/
Call Frame | swap_x % A
/
plid1 /q/l/dz
ti1 A RETURN| None
e
7
id1 id2
Point3 Point3
x| A3 XA 1
y |2 y |4
z|3 zZ|5

Global p (Question)

import shapes o |
/p = shapes.Point3(1,2,3) What 1s in global p after calling swap?
q = shapes.Point3(3,4,5) A-idl

B: id2

def swap(p, q): C: Idon’t know

1 t=p
2 p:q
3 q:t .dl
! id2
\\Swap(P. s) / - -
Global Space [A
p|idl v[2 iy
q | 1d2 z|3 .3 7

Global p (Solution)

ﬁ mport shapes o |
p = shapes.Point3(1,2,3) What is in global p after calling swap?
q = shapes.Point3(3,4,5) A:idl1 CORRECT

B: id2

def swap(p, q): C: Idon’t know

1 t=p
2 p:q
3 q:t .dl
! id2
\\Swap(P. s) / - -
Global Space [A
p|idl v[2 iy
q | 1d2 z|3 .3 8

Global p (Explanation)

ﬁ mport shapes

p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

def swap(p, Q):
1 t=p
2 p=q
3 q=t

\gwap(p.) /

Global Space

p|idl

q|id2

pd
Call Frame | swap ﬂ;;
e
p| idd idz/ar’fdé idl
t|id1 ¥~ RETURN| None
e
7
id1 id2
Point3 Point3
X 1 X 3
y |2 y |4
z|3 715

Methods: Functions Tied to Classes

* Method: function tied to object

= Method call looks like a function
call preceded by a variable name:

(variable).(method)({arguments)) id3

id3

Point3

Example:
1mport shapes .
u = shapes.Point3(4,2,3) y
u.greet() y4

“Hi! I am a 3-dimensional point
located at (4,2,3)”

Where else have you seen this??

Example: String Methods

* s, .upper() * s,.index(s,)
= Returns returns an upper case = Returns position of the first
version of S, instance of S, In S,
= error if s, 1s not in S,
* s.strip()
= Returns a copy of s with * s,.count(s,)
white-space removed at ends = Returns number of times s,

appears inside of S,

11

Built-in Types vs. Classes

Built-in types Classes

Built-into Python Provided by modules

Refer to instances as values e+ Refer to instances as objects

Instantiate with literals Instantiate w/ constructors

Can 1gnore the folders * Must represent with folders

So far only about understanding objects;
later will create your own classes

12

Big Picture

Statements either affect data or control

e DATA: change the value of a variable, create a
variable, etc.

Examples:
x=x+1
name = “Alex”
e CONTROL: tell python what line to execute next
Examples:

oreet(name)
if name == “Alex”: < today’s Lecture

13

Conditionals: [f-Statements

Format Example
if <boolean-expression>: # is there a new high score?
<statement> if curr_score > high_score:

high_score =curr_score

<statement> print(“New high score!”)

Execution:

if (boolean-expression) 1s true, then execute all of the statements

indented directly underneath (until first non-indented statement)

14

What are Boolean expressions?

Expressions that evaluate to a Boolean value.

is_student = True Boolean operations:

is_senior = False 1f 1s_student and i1s_senior:
num credits = 25 print(“Hi senior student!”)
Boolean variables: Comparison operations:

1f 1s_student: if num_credits > 24:

print(“Hi student!”) print(“Are you serious?”)

15

What gets printed, Round 1

a=0 a=0 a=0 a=0 a=0
print(a) a=a+] ifa==0: if a==1: ifa==0;
print(a) a=a+] a=za+l | a=a+]
orint(a) orint(a) a=a+l
print(a)

0 1 1 0 2

What gets printed? (Question)

a=0

ifa==0:

a=a+1 A: 0

ifa==0: 2;

S a=at+2 D: 3

a=a+ E: I do not know

18

What gets printed? (Solution)

a=0 Executed

if a==0: Executed

‘ a=a+ 1 Executed A: El)

ta==0: Exceuted g 2 CORRECT
a=a+2 |Skipped D- 3

a=a+1 Executed E: I do not know

print(a)

Conditionals: If-Else-Statements

Format

if <boolean-expression>:

Example

new record?

<statement> If curr_score > high_score:
a - print(“New record!”)
else:
else:
<statement> . . .
- print(“Try again next time”)
Execution:

if (boolean-expression) 1s true, then execute statements indented

under if; otherwise execute the statements indented under else

20

Conditionals: “Control Flow” Statements

] b Branch Point:
if b: True Evaluate & Choose<>

| s1 # statement|s1 False Statements:
Execute
sS3 # statement \ v

(Flow \

Program only
takes one path
during an
execution
(something will

not be executed!)
_ /

21

if b:

1

else: s1
. s2

sS3

What gets printed, Round 2

a=0 a=0 a=0 a=0
ifa==0: fa==1. ifa==1. ifa==1.
a=a+l | a=a+1 | a=a+l | a=a+l
else: else: else: else:
a=a+2 | a=a+2 | a=a+2 a=a+l
a=atl a=atl
print(a) print(a) print(a) a=a+l
print(a)
1 2 3 3

23

Program Flow (car locked, 0)

1f determines which statement is executed next

def get_in_car(car_locked): oo SPace

1 | if car_locked:
2 print(“*Unlock car!”)
3 print("Open the door.”)

-car_locked = True
get in_car(car_locked)

] 24

Program Flow (car locked, 1)

1f determines which statement is executed next

1

3

def get_in_car(car_locked):
If car_locked: car_locked
~ print(“Unlock car!”)

print("Open the door.”)

-car_locked = True

get in_car(car_locked)

]

Global Space

True

25

Program Flow (car locked, 2)

1f determines which statement is executed next

»def get in_car(car_locked):
I if car_locked:

~ print(“Unlock car!”)

3 print("Open the door.”)

car locked = True
get in_car(car_locked)

]

Global Space

car_locked

True

Call Frame

get in_car

car_locked

True

26

Program Flow (car locked, 3)

1f determines which statement is executed next

def get_in_car(car_locked):
* If car_locked:
~ print(“Unlock car!”)

3 print("Open the door.”)

car locked = True
get in_car(car_locked)

]

Global Space

car_locked

True

Call Frame

get in_car

12

car_locked

True

27

Program Flow (car locked, 4)

1f determines which statement is executed next

def get_in_car(car_locked):
1 | if car_locked:

é ~ print(“Unlock car!”)
print("Open the door.”)

car locked = True
get in_car(car_locked)

Unlock car!

Global Space

car_locked

True

Call Frame

get in_car

123

car_locked

True

28

Program Flow (car locked, 5)

1f determines which statement is executed next

def get_in_car(car_locked):
If car_locked:

~ print(“Unlock car!”)
print("Open the door.”)

1

2
D
car locked = True
get in_car(car_locked)

Unlock car!
Open the door.

Global Space

car_locked

True

Call Frame

get in_car

122

car_locked
RETURN

True

None

29

Program Flow (car not locked, 0)

1f determines which statement is executed next

def get_in_car(car_locked): oo SPace

1 | if car_locked:
2 print(“*Unlock car!”)
3 print("Open the door.”)

-car_locked = False
get in_car(car_locked)

] w

Program Flow (car not locked, 1)

1f determines which statement is executed next

def get_in_car(car_locked): oo SPace

1 if ca r_|OCked : car locked| False

~ print(“Unlock car!”)
3 print("Open the door.”)

»car_locked = False
get in_car(car_locked)

] a

Program Flow (car not locked, 2)

1f determines which statement is executed next

»def get in_car(car_locked):
I if car_locked:

~ print(“Unlock car!”)

3 print("Open the door.”)

car _locked = False
get in_car(car_locked)

]

Global Space

car_locked

False

Call Frame

get in_car

car_locked

False

32

Program Flow (car not locked, 3)

1f determines which statement is executed next

def get_in_car(car_locked):
1 | if car_locked:

é ~ print(“Unlock car!”)
print("Open the door.”)

car _locked = False
get in_car(car_locked)

]

Global Space

car_locked

False

Call Frame

get in_car

A3

car_locked

False

33

Program Flow (car not locked, 4)

1f determines which statement is executed next

def get_in_car(car_locked):
1 | if car_locked:

2 print(“*Unlock car!”)
é print("Open the door.”)

car _locked = False
get in_car(car_locked)

Open the door.

Global Space

car_locked

False

Call Frame

get in_car

13

car_locked
RETURN

False

None

34

What does the call frame look like next? (Q)

def max(x,y):

ifx>y:
2| returnx

3 returny

max(0,3)

Current call frame:

max 1

X 0

y 3

35

What does the call frame look like next? (Q)

def max(x,y):

2|

ifx>y:

return x

3 returny

max(0,3)

Current call frame:

max

A:

max | | A2
0
3
max | 1723
0
3
RETURN| 3

B:

max

RETURN| O

max

36

Call Frame Explanation (1)

def max(x,y): max(0,3):
ifx>y:
~ return x max
return y X| 0

Call Frame Explanation (2)

1
2

def max(x,y):

ifx>y:

return x

,return Yy

max(0,3):

max 13

[Skips line 2]

39

Call Frame Explanation (3)

def max(x,y): max(0,3):
1| ifx>y:
2| returnx max 13
“returny X| 0
RETURN
y 3 3

Program Flow and Variables

Variables created inside if continue to exist past if:
a=0
ifa==0:
- b=a+1
print(b)

...but are only created if the program actually
executes that line of code

41

Control Flow and Variables (Q1)

def max(x,y):

check if x is larger
if x> y:

\ bigger = X

return bigger

maximum = max(3,0)

"""Returns: max of x, y""
note: code has a bug!

Value of maximum?

A:3

B: 0

C: Error!

D: I do not know

44

Control Flow and Variables (A1)

def max(x,y): Value of maximum?

"""Returns: maX Of X, y"HIl .
note: code has a bug! A:3 CORRECT
check if x is larger B: 0
i : C: Error!
if X >y:

i — D: I do not know
\ bigger = X

return bigger * Local variables last until

* They are deleted or

maximum = max(3,0) = End of the function

 Even if defined inside if

45

Control Flow and Variables (Q2)

def max(x,y):

check if x is larger
if x> y:

\ bigger = X

return bigger

maximum = max(0,3)

"""Returns: max of x, y""
note: code has a bug!

Value of maximum?

A:3

B: 0

C: Error!

D: I do not know

46

Control Flow and Variables (A2)

def max(x,y): Value of maximum?
"""Returns: max of x, y"™" .
note: code has a bug! A:3
check if x is larger B: 0

C: Error! CORRECT

if x> y:
D: I do not know ‘

\ bigger = X
return bigger

 Variable existence depends

| on flow
maximum = max(0,3) * Generally terrible idea to

refer to variables defined

inside an if clause
47

Program Flow and Variables

def zero_or _one(a):

ifa==1: p N
- b= 1\ make sure that ALL
else: if branches create
b= 0/ the variable

_ /

48

Conditionals: If-Elif-Else-Statements

Format

if <Boolean expression>:
<statement>

elif <Boolean expression>:

<statement>

else:
<statement>

Example

Find the winner

if scorel > score2:

~ winner =“Player1”

elif score2 > scorel:

~ winner =“Player 2’

else:

 winner =“Players 1 and 2"

49

Conditionals: If-Elif-Else-Statements

Format Notes on Use
if <Boolean expression>: No limit on number of elif

<statement> = Must be between if, else

* else is optional

elif <Boolean expression>:
= if-elif by itself is fine

<statement>
Booleans checked in order
= Once Python finds a true
else: <Boolean-expression>, skips
over all the others

= else means all <Boolean-

<statement>
expression> are false

50

If-Elif-Else (Question)

a=2
What gets printed?
if a ==2: A: 2
a=3 B: 3
elif a == 3: C: 4
a=4 D: I do not know

print(a)

51

If-Elif-Else (Answer)

a=2
What gets printed?
if a ==2: A: 2
a=3 B: 3 CORRECT
elif a == 3: C: 4
a=4 D: I do not know

print(a)

52

What gets printed, Round 3

a=2 a=2

if a==2: if a==2:
 a=3 - a=3
elif a == 3: if a ==23:
- a=4 - a=4
print(a) print(a)
3 4

54

Nested Conditionals

def what to wear(raining, freezing):
If raining:
If freezing:
print("WWear a waterproof coat.”)
else:
print("Bring an umbrella.")
else:
If freezing:
print("\Wear a warm coat!")
else:
print("A sweater will suffice.")

55

Program Flow and Testing

Can use print statements # Put max of x, y in z

to examine program flow orint(before if)

if x>y:
before it print(inside if x»y)
‘inside if X>y‘ 7 =X W “traces” or
: - “breadcrumbs”
afterif' (ymusthave | élse:
been greater print(inside else (¥4y))
thany z=y

print(after if’)

57

