Lecture /:

Objects
(Chapter 15)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

No-laptop [IiitontaN
Announcements Zzohe on -‘
el

your left
e Optional 1-on-1 with a staff member to helpjust you
with course material. Sign up for a slot on CMS under
“SPECIAL: one-on-ones”.

e Al: Two updates on course website—see orange text
on cover page of Al on website. We encourage you to
use Piazza

e A new AEW section has been added: M 7:30-9:30pm
(search for “ENGRG 1010” on Student Center for details)

e Before next lecture, read § 5.1-5.7

Programming Practice in Al

Testing
Debugging

Unit Test

J . .
= ~ Still need to import

def test_last_name_first():

modules name, testcase

|

""Calls all the tests for name.last_name_first
print(Testing function name.last_name_first’)
HTestl

result = name.last_name_first('Katherine Johnson')
testcase.assert_equals('Johnson, Katherine', result)

Test 2

result = name.last_name_first('Katherine Johnson')

—

-

testcase.assert_equals('Johnson, Katherine', result) B

Kfu nction

Putall)
tests

inside
one

/

Execution of the testing code (No tests happen if you

test_last_name_first()

—_ forget to call the function

|

print(‘All tests of the function last_name_first passed’)

How to debug

Do not ask:

“Why doesn’t my code do what | want it to do?”
Instead, ask:

“What is my code doing?”

Two ways to inspect your code:

1. Step through your code, drawing pictures
(or use python tutor!)

2. Use print statements

Take a look in the python tutor!

def last_name first(full_name): / _ \
<snip out comments for ppt slide> Pay attention to:

#get index of space * Code you weren’t
space_index = full_name.find(' ") 100% sure .0f as
#get first name you wrote It

first = full_name[:space_index] * Code relevant to

#get last name Kthe failed test case/

last = full_name[space index+1:]
#return “<last-name>, <first-name>"
return last+', "+first

last_name_first("Katherine Johnson”)

Using print statement to debug

def last name_first(full_name):

#get index of space

. - 1 1t /S t th \
space_index = full_name.find("' ') ometimes this IS
print(‘'space_index = '+ str(space_index)) VOUf only option,
#get first name but it does make

first = full_name[:space_index] a mess of your

e . code, and
1 — |+
print(‘first first) o duces cut-n-
#get last name | \ paste errors. /
last = full nhame[space index+1:]

print('last = '+ last)
#return “<last-name>, <first-name>"
return last+', '+first 4/[How do | print this?]

Be sure to start A1 now

e Start Al now
" Lots of time to think through any difficulty parts
= Consulting/office hours not too busy—get help fast
" There’s time to schedule a 1-on-1 appt

e Start Al the night before due date

= No time to deal with “sudden” difficulties

= Consulting/office hours very crowded—loooonnnng
wait time

Type: set of values & operations on

them
Type float: Type str:
« Values: real numbers * Values: string literals
e Ops:+,- * 1, 1,* » Double quotes: “abc”
Type int: . Oslsn.g-:_e quotes: ‘abce
* Values: integers (concatenation)

e Ops:+,-,* 1, %,*
Type bool:

* Values: integers
* Ops: not, and, or

Built-in Types are not “Enough”

47

* Want a point in 3D space Jag
* We need three variables
= ¥, y, z coordinates [
 What if have a lot of points? = Vi
= Vars x0, y0, z0 for first point . ,{5

* P(2.0, 3.0, 5.0)

= Vars x1, yl, zI for next point ~

.- s

= This can get really messy ' y 3

« How about a single variable z | 5

that represents a point?

10

10

Built-in Types are not “Enough”

* Want a point in 3D space * Can we stick them
= We need three variables together in a “folder”?
" X,), z coordinates e Motivation for objects

* What if have a lot of points?
= Vars x0, y0, z0 for first point

= Vars x1, yl, zI for next point)
X
= This can get really messy y 3
* How about a single variable 7 5

that represents a point?

11

Objects: Organizing Data in Folders

* An object 1s like a manila folder

* [t contains other variables
= Variables are called attributes

= These values can change

* It has an ID that identifies it

* Unique number assigned by Python
(just like a NetID for a Cornellian)

= Cannot ever change

* Has no meaning; only identifies

Unique tab
1dentifier
id1

X 2
y 3
7 5

14

Classes: user-defined types for Objects

I nam
- Values must have a type id1 Cldss name

= An object is a value Point3

= Object type is a class

- Modules provide classes x 2
- Example: shapes.py y :
= Defines: Point3, Z 5

Rectangle classes

15

Constructor: Function to make Objects

- How do we create objects?

= QOther types have literals p id2 id2
" No such thing for objects Point3
- (Call a Constructor Function:
= Format: (c/ass name)({arguments)) %S 0
= Example: Point3(0,0,0) y 0
= Makes a new object (manila folder)
with a new id zZ 0

= Called an /instantiated object _ _ _
instantiated object

m Returns folder /d as value

variable
- Example: p = Point3(0, O, 0) stores id
= Creates a Point object hot object

= Stores object’s idin p 16

Storage in Python

- Global Space Global Space

= What you “start with” o iz id2
= Stores global variables
= Lasts until you quit Python

wn | f1
= Where “folders” are stored £
= Have to access indirectly o
» Call Frames G

= Parameters
= Other variables local to function
= [asts until function returns

Constructors and Modules

. Global S
>>> import shapes ooal Space

Need to import module &%SJ hape
that has Point3 class. odule

* This is what’s actually happening
* Python Tutor draws this.
* Knowing this will help you debug.

CS 1110 doesn’t draw module variables & folders
(also skips all the built-in functions)

18

—> makes your diagrams cleaner

Constructors and Modules

>>> Import shapes

Global Space

Need to import module p | id2
that has Point3 class.

>>> p = shapes.Point3(0,0,0)
{ Constructor 1s function. J

Prefix w/ module name.

>>> id(p)

[Shows the id of p

id2

Point3

19

Accessing Attributes

. Attributes are variables 000 Space

that live inside of objects | id3 id3

= Can use 1n expressions Point3

= Can assign values to them

1

* Format: (variable).(attribute) .
= Example: p.x y |2
* Look like module variables z |3

* To evaluate p.x, Python:
1. finds folder with id stored in p

2. returns the value of X in that folder

20

Accessing Attributes Example

* Example:

p = shapes.Point3(1, 2, 3) P
pX=pX+3

Global Space

id3

id3

Point3

X 4
2

21

Object Variables

« Variable stores object id Global Space

= Reference to the object .
p1| id2

= Reason for folder analogy

 Assignment uses object id p2| id2

= Example:
p1 = shapes.Point3(0, 0, 0)
p2 = p1

= Takes contents from p1
= Puts contents in p2

= Does not make new folder!

id2

Point3

This 1s the cause of many mistakes when starting to use objects

22

Attribute Assignment (Question)

Global Space
>>> p = shapes.Point3(0,0,0) P
>>>(g=p p 1d4 id4
- Execute the assignments: . e
q | id4
>>>px=5 < |0
>>>q.xX=7
- What is value of p.x? y |0
z |0
A:S
B:7
C: id4
D: I don’t know

23

Attribute Assignment (Solution)

Global S
>>> p = shapes.Point3(0,0,0) o ~Pace
>>>(g=p p 1d4 id4
 Execute the assignments: . Point3
q| 1d4

>>>pXx=5 o

>>>(qXx=7
- What is value of p.x? y |0

z |0

A:5

B: 7 CORRECT
C

D

- I don’t know

24

Call Frames and Objects (1)

Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

* Example:

1

»def incr_x(q):

- gXxX=gx+1

>>> p = shapes.Point3(1, 2, 3)
>>> incr_Xx(p)

Point3

Global Space
0 ids idS
X
Call Frame
incr_x 1
q | id5

25

Call Frames and Objects (2)

* Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

* Example:
def incr_x(q):
- gXxX=gx+1

>>> p = shapes.Point3(1, 2, 3)
>>> incr_Xx(p)

Point3

Global Space
0 ids idS
X | X2
Call Frame
incr_x /f
q | id5
RETURN

NONE

26

Call Frames and Objects (3)

* Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

* Example:
def incr_x(q):
1/ qx=qgx+1

>>> p = shapes.Point3(1, 2, 3)

>3 incr_x(p)

Point3

X2

Global Space
o| id5 idS
X
Call Frame
incr_x //
q idS/
REJIRN NONE

27

How Many Folders (Question)

4 N
Import shapes
p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

28

How Many Folders (Solution)

4)
Import shapes
p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

id1 id2
Point3 Point3
x| 1 X|3
y |2 y |4
z|3 715

29

What Else? (Question)

4 N
Import shapes
p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?
) What else gets drawn?

id1 id2
Point3 Point3
x |1 x |3
y|2 y |4
z|3 715

30

What Else? (Solution)

4)
Import shapes
p = shapes.Point3(1,2,3)
g = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?
) What else gets drawn?

Global Space
id1 id2
p |id1 Point3 Point3
qlid2 & X |3
y |2 y |4
Z 3 715

31

Swap (Question)

ﬁmport shapes \ What 1s in p.X at the end of this code?
p = shapes.Point3(1,2,3) Al
g = shapes.Point3(3,4,5) B: 2
: C:3
]d etf f\iljvip_X(p. P: D: I don’t know
2 P.X=0.X
3 gx=t
id1 id2
&wap_X(p. q) / Point3 v
Global Space <1 I3
p|idl v|2 v[4

q|id2 z|3 z|5

Global p (Question)

import shapes o |
/p = shapes.Point3(1,2,3) What 1s in global p after calling swap?
q = shapes.Point3(3,4,5) A-idl

B: id2

def swap(p, q): C: Idon’t know

1 t=p
2 p:q
3 q:t .dl
! id2
\\Swap(p' ? / Point3 Point3
Global Space [A
p|idl v[2 iy
q | 1d2 z|3 .3)

Methods: Functions Tied to Classes

* Method: function tied to object

= Method call looks like a function
call preceded by a variable name:

(variable).(method)({arguments)) id3

id3

Point3

Example:
1mport shapes .
u = shapes.Point3(4,2,3) y
u.greet() y4

“Hi! I am a 3-dimensional point
located at (4,2,3)”

Where else have you seen this??

Example: String Methods

* s, .upper() * s,.index(s,)
= Returns returns an upper case = Returns position of the first
version of S, instance of S, In S,
= error if s, 1s not in S,
* s.strip()
= Returns a copy of s with * s,.count(s,)
white-space removed at ends = Returns number of times s,

appears inside of S,

37

Built-in Types vs. Classes

Built-in types

Classes

Built-into Python
Refer to instances as values
Instantiate with literals

Can 1gnore the folders

Provided by modules
Refer to instances as objects
Instantiate w/ constructors

Must represent with folders

38

Where To From Here?

- First, Understand objects
= All Python programs use objects

* Most small programs use objects of classes
that are part of the Python Library

- Eventually, create your own classes:
" the heart of OO Programming

* the primary tool for organizing Python programs

 But we need to learn more basics first!

39

