Y S W)
rses/csl1110/2020sp |

¢ 5 X '.-\.I"'

nell.edu/cou

.COonr
. A

)
b,

Lecture 6:

Specifications & Testing
(Sections 4.9, 9.5)

CS 1110
Introduction to Computing Using Python

Orange text indicates updates made after lecture

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

No-laptop [IiitontaN

Announcements zone on
your left
 No laptop use stage right (your left) =

e We will use clickers, but not for credit. Therefore no

need to register your clicker.

e To access video of lecture, log in using NetID and
password “through Canvas”, but we don’t use Canvas
otherwise. Course website is
https://www.cs.cornell.edu/courses/cs1110/2020sp/

e Before next lecture, read Chapter 15

More announcements

e Download code from lecture and experiment with it—
run, modify, run again, ...
e Assignment 1 will be posted today or Friday
" Have over a week to do it
= Can choose to work with one partner and together submit one
assignment
= Canrevise and resubmit after getting grading feedback
e Starting next week: optional 1-on-1 with a staff

member to help just you with course material. Sign up
for a slot on CMS under “SPECIAL: one-on-ones”.

Continue from previous lecture:

String
print vs return

String: Text as a Value

 String are quoted characters

= 'abc d' (Python prefers) Type: str

= "abc d" (most languages)

* How to write quotes in quotes?

= Delineate with “other quote” single quote

\"" double quote

= Example: or
= What if need both "and ' ?

\n new line

\t tab

* Solution: escape characters \\ backslash
= Format: \ followed by letter (character)

= Special or invisible chars

Not All Functions Need a Return

def greet(n):
""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string"™"
print('Hello '+n+'"")

print('How are you?')

\ J
Y

No assignments or return
(returns None)

~

Displays these
strings on the
screen

/

print VS. return

* Displays a value on screen * Sends a value from a function

» Used primarily for testing call frame back to the caller

« Not useful for calculations * Important for calculations

* Does not display anything

def print_plus(n): def return_plus(n): .
print(n+1) return n+l '

>>> print_plus(2) >>> return_plus(2)

3 3

>>> >>> 7

unexpected printing courtesy of:

Python Interactive Mode

- executes both statements and expressions

- if expression:
1. evaluates
2. prints value (if one exists)

>>> 2+2 €= evaluates (performs addition)
4 <— prints value (4)

>>> retu rn_plus(2)<— evaluates (makes function call,

3 <— prints value (3) gets return value)

>>>

return_plus in action

def return_plus(n): return_plus /
call frame
\ return n+1 4

N
REPA 3

Python Interactive Mode 7
1. Evaluates : makes

>>> return_plus(2) <+—
3

>>>

function call, evaluates to
return value

2. Python interactive
mode prints that value

print_plus in action

def print_plus(n):
- print(n+1)

Python)'lteractive Mode

>>‘>/{5ri nt_plus(2)
3

/
print_plus A
call frame /5/

N
REPA NONE

/
1. Evaluates : makes
function call, evaluates to

return value (NONE)

>>>
\ 2. does /701',0/‘/771' value

b/c it's NONE

10

hybrid_plus in action

def hybrid_plus(n):
print(n)
returh n+1

Python nteractive Mode

>>>;{ri nt_plus(2)
2

print_plus //f ,/Z

call frame

2

N
REPA 3

1. Evaluates : /;73/(‘95
function call, evaluates to
return value

2. Python interactive
mode prints that
returned value

11

Exercise 1

Module Text Python Interactive Mode
module.py >>> import module
>>> print(module.x)
def foo(x): . \ What does Python }
X = x+3 Code shown in give me?
o lecture was 1+2.
X = 3"X Some students were
confused because A: 9
the argument x B: 10
wasn’t used. It ,
) Co 1
wasn’t an error, but _
we changed the D: None
code now to avoid E: Error

\\ any distraction. /

13

Exercise 1, Solution

Module Text Python Interactive Mode
module.py >>> import module
>>> print(module.x)
def foo(x): . \ What does Python }
X = x+3 Code shown in give me?
o lecture was 1+2.
X = 3"X Some students were
confused because A: 9
the argument x B: 10
wa:sntused. It C: 1
wasn'’t an error, but _
we changed the D: None
code now to avoid E: Error CORRECT

\\ any distraction. / 14

Exercise 2

Module Text Python Interactive Mode
module.py >>> import module
>>> print(module.y)
def foo(x): . \ What does Python }
X = x+3 Code shown in give me?
o lecture was 1+2.
X = 3*X Some students were
confused because A: 9
. the argument x B: 10
y = fOO(O) wasn't used. It ,
) Co 1
wasn’t an error, but _
we changed the D: None
code now to avoid E: Error

\\ any distraction. / 15

Exercise 2, Solution

Module Text Python Interactive Mode
module.py >>> import module
>>> print(module.y)
def foo(x): . \ What does Python }
X = x+3 Code shown in give me?
o lecture was 1+2.
X = 3"X Some students were
confused because A: 9
. the argument x B: 10
y = foo(0) wasn't used. It ,
) Co 1
wasn'’t an error, but _
we Changed the D: None CORRECT
code now to avoid E: Error

\\ any distraction. / 6

Exercise 3

Module Text Python Interactive Mode
module.py >>> import module
>>> module.y
def foo(x): . e What does Python
X = x+3 Code shown in \ give me?
. lecture was 1+2. '
X = 37X Some students were
return x+1\ confused because A: 9
the argument x B: 10
wasn't used. It C: 1
y = fOO(O) wasn'’t an error, but
we changed the D: None
code now to avoid E: Error

\\ any distraction. /

17

Exercise 3, Solution

Module Text Python Interactive Mode
module.py >>> import module
>>> module.y
def foo(x): . What does Python
X = x+3 Code shown in \ give me?
. lecture was 1+2. '
X = 37X Some students were
return x+1\ confused because A: 9
the argument x B: 10 CORRECT
wasn't used. It C: 1
y = fOO(O) wasn'’t an error, but
we changed the D: None
code now to avoid E: Error

\\ any distraction. / 13

Exercise 4

Function Definition Function Call
def foo(a,b): >>> X =2
1 x=3 >>> f00(3,4)
21 y=b >>> X What does Python}
. orve me?
3 return x*y+y
A:2
B:3
C: 16
D: None
E: I do not know

19

Exercise 4, Solution

Function Definition Function Call
def foo(a,b): >>> X =2
1 x=1 >>> f00(3,4)
21 y=b >>> X What does Python}
. orve me?
31 return x*y+y
A:2 CORRECT
B:3
C: 16
D: None
E: I do not know

http://cs1110.cs.cornell.edu/tutor#fmode=edit 20

Specifications & Testing

Recall the Python API

https://docs.python.org/3/library/math.html

o N\
Function [

a e Documentation » The Python Standard Library » 9. Numeric and Mathematical Modules » | | Go || previous | next | modules | index

@ Python Software Foundation docs.python.org/3/library/math.html C] a
_}

9.2. math — Mathematical functions — Python 3.6.4 documentation

N

an 2

fontents. Possible arguments 1ons
y,

\'4 /\
math. ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x. ceil (), which should return an

Integral value.

TOTTS

Module } What the function

- This is a specification
ol evaluates to

| = How to use the function

= 9.2.6. Sped functions 9.2.1. Number-theoretic and repr

= 9.2.7. Constan h ° °
o P * Not how to implement it
revious topic Return the ceiling of x, the smallest integer greate

9.1. numbers — Numeric

abstract base classes Integral value.

math. copysign(x, y) ¢ Write them as dOCStrings

Next topic ’)
913 emnth ™ Mathematical Return a float with the magnitude (absolute value)
functions for complex turns -1.0.
numbers
math. fabs(x)
This Page Return the absolute value of x.

Report a Bug
Show Source math. factorial(x) 23

Return x factorial. Raises valueError if x is not integral or is negative.

Anatomy of a Specification

def greet(name): [{Short description, }
e

""Prints a greeting to person nam followed by blank line
followed by conversation starter.

N
As needed, more detail in

<more details could go here> 1 (or more) paragraphs

~

name: the person to greet HParameter description |

Precondition: name is a string - ~

orint('Hello “+name+"") \ Precondition specifies

o , assumptions we make
print(’How are you’) \about the arguments

24

Anatomy of a Specification

def get_campus_num(phone_num):
""Returns the on-campus version

of a 10-digit phone number. Information about
the return value

Returns; str of form “X-XXXX)
Parameter description
e ™

_ Precondition specifies
phone_num: number w/area code :
assumptions we make

Precondition: phone_numis a 10 « b 4 T
digit string of only numbers™" . /

return phone_num|[5]+"-"+phone_num[6:10]

Short description,
followed by blank line

\

25

A Precondition Is a Contract

» Precondition is met: >>> get_campus_num(“6072554444")
The function willwork! . ,,, .

* Precondition not met? ;1o campus_num(“60725312347)
Sorry, no guarantees... 3_1234

Software bugs occur if: >>> get_campus_num(6072531234)

- Precondition is not Traceback (most recent call last):

documented properly File "<stdin>", line 1, in<module>
 Function use violates the File "/Users/bracy/cornell_phone.py", line 12, in
precondition get_campus_num
4

Precondition violated: return phone_num([5]+"-"+phone_num[6:10]

TypeError: 'int’ object i t iptabl
§ error message! ypeError: 'int' object is not subscriptable

} >>> get_campus_num(“607-255-4444")

Precondition violated:

no error message! 9-3-44

26

NASA Mars Climate Orbiter

“NASA lost a $125 million [
Mars orbiter becausea |
Lockheed Martin
engineering team used
English units of
measurement while the
agency's team used the
more conventional metric
system for a key 7
spacecraft operation..” W&E/A. O
- |ost September 23, 1999

Sources: Wikipedia & CNN

Preconditions Make Expectations Explicit

In American terms:

Preconditions help assign
blame.

Something went wrong.

Did you use the function wrong?
OR

Was the function implemented/specified wrong? ,,

Basic Terminology

Bug: an error in a program. Expect them!

" Conceptual & implementation

Debugging: the process of finding bugs and
removing them
Testing: the process of analyzing and running a
program, looking for bugs
Test case: a set of input values, together with
the expected output

Get in the habit of writing test cases for a
function from its specification
— even before writing the function itself! 30

Test Cases help you find errors

def vowel count(word):
"""Returns: number of vowels in word.

word: a string with at least one letter and only letters™"
pass # nothing here yet!

Some Test Cases More Test Cases
= vowel count('Bob’) = vowel count('y’)
Expect: 1 Expect: 0?7 1?
= vowel count('Aeiuo’) = vowel count('Bobo’)
Expect: 5 Expect: 1?7 27?

= vowel_count('Grrr’)

Expect: 0
Test Cases can help you find errors in the
specification as well as the implementation.

31

Representative Tests

- Cannot test all inputs
* “Infinite” possibilities
- Limit ourselves to tests
that are representative

= Each test is a significantly
different input

= Every possible input is
similar to one chosen

- An art, not a science

= |f easy, never have bugs
= Learn with much practice

Representative Tests for
vowel count(w)

Word with just one vowel
" For each possible vowel!
Word with multiple vowels
* Of the same vowel

= Of different vowels
Word with only vowels

Word with no vowels

32

Representative Tests Example

def last_name_first(full_name):
""Returns: copy of full_name in form <last-name>, <first-name>

full_name: has the form <first-name> <last-name>
with one or more blanks between the two names™

end_first = full_name.find(")
first = fullLname[:end_first] Look at prec.ondltlon
last = full_name[end_first+1:] when choosing tests

return last+, '+irst

Representative Tests:

last_name_first(‘Katherine Johnson) Expects: ‘Johnson, Katherine'
last_name_first(Katherine Johnson’) Expects: ‘Johnson, Katherine'

34

Debugging with Test Cases (Question)

def last_ name_first(full_name):
"""Returns: copy of full_name in the form <last-name>, <first-name>

full_ name: has the form <first-name> <last-name>
with one or more blanks between the two names™*

#get index of space after first name

1 space_index = full_name.find('" : ..
Pame_ B) Which line 1s “wrong”?
#get first name :
. . A: Line 1
2 first = full_name[:space_index] :
B: Line 2
#get last name .
. C: Line 3
3 last = full_ name[space_index+1:] :
] _ . |D: Line 4
#return “<last-name>, <first-name>
e E: I do not know
4 return last+', '+first

last_name_first('Katherine Johnson’) gives 'Johnson, Katherine'
- last_name_first(Katherine Johnson’) gives' Johnson, Katherine'

35

Debugging with Test Cases (Solution)

def last_ name_first(full_name):
"""Returns: copy of full_name in the form <last-name>, <first-name>

full_ name: has the form <first-name> <last-name>
with one or more blanks between the two names™*

#get index of space after first name

1 space index = full name.find('"' . . .
Pame_ B) Which line 1s “wrong”?
#get first name :
. . A: Line 1
2 first = full_name[:space_index] :
#get last name B: Lme 2
J | C:Line3 CORRECT
3 last = full_ name[space_index+1:] :
] _ . |D: Line 4
#return “<last-name>, <first-name>
e E: I do not know
4 return last+', '+first

last_name_first('Katherine Johnson’) gives 'Johnson, Katherine'

last_name_first(Katherine Johnson’) gives' Johnson, Katherine'
36

Motivating a Unit Test

- Right now to test a function, we:
= Start the Python interactive shell
* Import the module with the function

= Call the function several times to see if it works right

- Super time consuming! ®
* Quit and re-enter python every time we change module

= Type and retype...
- What if we wrote a script to do this ?!

37

testcase module

- Contains useful testing functions

e To use:

" Download from “Schedule” link of course
website (one of today’s lecture files)

" Put in same folder as the files you wish to test

38

Unit Test: A Special Kind of Script

- A unit test is a script that tests another module. It:

= Imports the module to be tested (so it can access it)
= Imports testcase module (for testing)
* Defines one or more test cases that each includes:
A representative input
- The expected output

= Test cases use the testcase function:

def assert_equals(expected, received):
""Quit program if ‘expected and received differ

39

Testing last_name_first(full_name)

import name # The module we want to test
Import testcase # Includes the tests

Input
Firj“eﬁ}[Actual output |

result’= name.last_name_first(‘Katherine Johnson')
testcase.assert_equals('Johnson, Katherine', result)

[Expected output r \L Quits Python J
Second test case if not equal
result = name.last_name_first('Katherine JohnsoV
testcase.assert_equals('Johnson, Katherine', result)

/[Prints only if}
_ _ _ no errors
print(‘All tests of the function last_name_first passed’)

Organizing your Test Cases

 We often have a lot of test cases

= Common at (good) companies

* Need a way to cleanly organize them

Idea: Bundle all test cases into a single test!
= One high level test for each function you test

* High level test performs all test cases for
function

" Also uses some print statements (for feedback)

One Test to Rule them All

IV :
— ~ Still need to import
def test_last_name_first(): L modules name, testcase

"Calls all the tests for last_name_first™

print(Testing function last_name_first’) h

#Test 1 /Put a”\
result = name.last_name_first('Katherine Johnson') tests
testcase.assert_equals(Johnson, Katherine', result) > inside

Test 2 one
result = name.last_name_first('Katherine Johnson') \funCtion/
testcase.assert_equals('Johnson, Katherine', result) B

Execution of the testing code (No tests happen if you
test_last_name_first() —_forget to call the function

print(‘All tests of the function last_name_first passed’)

42

