
Lecture 5: Strings
(Sections 8.1, 8.2, 8.4, 8.5,

1st paragraph of 8.9)

CS 1110
Introduction to Computing Using

Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2020sp

• No laptop use stage right (your left)
• We will use clickers, but not for credit. Therefore no

need to register your clicker.
• “Partner Finding Social” Tues Feb 4th 5-6pm Gates

Hall 3rd floor Lounge (1xxx-2xxx courses)
• Before next lecture, read Sections 4.9, 9.5
• To access video of lecture, log in using NetID and

password “through Canvas”, but we don’t use
Canvas otherwise. Course website is
https://www.cs.cornell.edu/courses/cs1110/2020sp/

Announcements

2

No-laptop
zone on
your left

front

ok

Today

• More about the str type
 New ways to use strings

• More examples of functions
 Functions with strings!

• Learn the difference between print and return

3

Strings are Indexed (Question 1)

• s = 'abc d'

• Access characters with []
 s[0] is 'a'
 s[4] is 'd'
 s[5] causes an error
 s[0:2] is 'ab' (excludes c)
 s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[3:6]?

4

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

Strings are Indexed (Solution 1)

• s = 'abc d'

• Access characters with []
 s[0] is 'a'
 s[4] is 'd'
 s[5] causes an error
 s[0:2] is 'ab' (excludes c)
 s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[3:6]?

5

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

CORRECT

Strings are Indexed (Question 2)

• s = 'abc d'

• Access characters with []
 s[0] is 'a'
 s[4] is 'd'
 s[5] causes an error
 s[0:2] is 'ab' (excludes c)
 s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[:3]?

6

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'all'
B: 'l'
C: 'Hel'
D: Error!
E: I do not know

Strings are Indexed (Solution 2)

• s = 'abc d'

• Access characters with []
 s[0] is 'a'
 s[4] is 'd'
 s[5] causes an error
 s[0:2] is 'ab' (excludes c)
 s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[:3]?

7

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'all'
B: 'l'
C: 'Hel'
D: Error!
E: I do not know

CORRECT

Other Things We Can Do With Strings
Operator in: s1 in s2

• Tests if s1 “a part of”

(or a substring of) s2

• Evaluates to a bool
Examples:
>>> s = 'abracadabra'
>>> 'a' in s
True
>>> 'cad' in s
True
>>> 'foo' in s
False

Built-in Function len: len(s)
 Value is # of chars in s
 Evaluates to an int

Examples:
>>> s = 'abracadabra’
>>> len(s)
11
>>> len(s[1:5])
4
>>> s[1:len(s)-1]
'bracadabr'
>>>

8

Defining a String Function

Want to write function
middle, which returns the
middle 3rd of a string (length
divisible by 3).

How we want it to behave:
>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb'

9

Important Questions:
1. What are the parameters?
2. What is the return value?
3. What goes in the body?

def middle(text):

???
return middle_third

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

10

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code

>>> middle('abc')
>>> middle('aabbcc')
>>> middle('It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity, it was the season of Light, it was the season of Darkness, it was the spring of
hope, it was the winter of despair, we had everything before us, we had nothing before us,
we were all going direct to Heaven, we were all going direct the other way…') 11

middle_third = text[2:4]

middle_third = text[1] Too easy!!

Still too easy!!

Definition of middle
def middle(text):

"""Returns: middle 3rd of text
Paramtext: a string with
length divisible by 3"""

12

IMPORTANT:
Precondition requires
that arguments to
middle have length

divisible by 3.

If not? Bad things
could happen, and we
blame the user (not
the author) of the

function.

Definition of middle
def middle(text):

"""Returns: middle 3rd of text
Paramtext: a string with
length divisible by 3"""

Get length of text
size = len(text)
Start of middle third
start2 = size//3
End of middle third
start3 = (2*size)//3
Get the substring
middle_third = text[start2:start3]
return middle_third 13

IMPORTANT:
Precondition requires
that arguments to
middle have length

divisible by 3.

If not? Bad things
could happen, and we
blame the user (not
the author) of the

function.

Advanced String Features: Method Calls

• Strings have some useful methods
 Like functions, but “with a string in front”

• Format: <string name>.<method name>(x,y,…)
• Example: upper() returns an upper case version

>>> s = 'Hello World’
>>> s.upper()
'HELLO WORLD’
>>> s
'Hello World’

14

>>> s[1:5].upper()
'ELLO'
>>> ‘scream'.upper()
‘SCREAM'
>>> 'cs1110'.upper()
'CS1110'

Examples of String Methods

• s1.index(s2)
 Returns position of the first

instance of s2 in s1

 error if s2 is not in s1

• s1.count(s2)
 Returns number of times s2

appears inside of s1

• s.strip()
 Returns a copy of s with

white-space removed at ends

• s = 'abracadabra’

• s.index('a')
• s.index('rac')
• s.count('a')
• s.count('b')
• s.count('x')
• ' a b '.strip()

15See Python Docs for more

0
2
5
2
0

'a b'

a b r a c
0 1 2 3 4

a
5

d
6

a
7

b
8

r
9

a
10

String Extraction Example

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

>>> s = 'One (Two) Three'
>>> firstparens(s)
'Two'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

16

String Extraction, Round 1

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

Find the open parenthesis
start = text.index('(')

Find the close parenthesis
end = text.index(‘)’)

inside = text[start+1:end]

return inside

>>> s = 'One (Two) Three'
>>> firstparens(s)
'Two'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

17

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

18

Think of all the corner cases
What could possibly go wrong?

String Extraction, Round 2

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

Find the open parenthesis
start = text.index('(')

Store part AFTER paren
substr = text[start+1:]

Find the close parenthesis
end = substr.index(')')

inside = substr[:end]
return inside

>>> s = 'One (Two) Three'
>>> firstparens(s)
'Two'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

19

String Extraction Puzzle

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Paramthelist: a list of words with
at least two commas """

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

Is there an error?

A: Yes, Line 1
B: Yes, Line 2
C: Yes, Line 3
D: Yes, Line 4
E: There is no error

20

1
2
3
4
5

String Extraction Puzzle

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Paramthelist: a list of words with
at least two commas """

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion')
expecting: 'dog' get: ' dog'

>>> second('apple, pear, banana')
expecting: 'pear' get: ‘ pear'

Is there an error?

A: Yes, Line 1
B: Yes, Line 2
C: Yes, Line 3
D: Yes, Line 4
E: There is no error

21

1
2
3
4
5

String Extraction Puzzle, v2

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Paramthelist: a list of words with
at least two commas """

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion')
expecting: 'dog' get: ' dog'

>>> second('apple,pear , banana')
expecting: 'pear' get: 'pear '

22

1
2
3
4
5

String Extraction Fix

>>> second('cat, dog, mouse, lion')
expecting: 'dog' get: ' dog'

>>> second('apple,pear , banana')
expecting: 'pear' get: 'pear '

result = tail[:end].strip() #better fix!

tail = thelist[start+2:] #possible fix ??
What if there are multiple (or no!) spaces?

23

1
2
3
4
5

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Paramthelist: a list of words with
at least two commas """

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

String: Text as a Value

• String are quoted characters
 'abc d' (Python prefers)
 "abc d" (most languages)

• How to write quotes in quotes?
 Delineate with “other quote”
 Example: " ' " or ' " '
 What if need both " and ' ?

• Solution: escape characters
 Format: \ followed by letter (character)
 Special or invisible chars

24

Char Meaning
\' single quote
\" double quote

\n new line
\t tab
\\ backslash

Type: str

