
Lecture 2:
Variables & Assignments

(Sections 2.1-2.3,2.5)
CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2020sp

Orange text indicates updates made after lecture

http://www.cs.cornell.edu/courses/cs1110/2018sp

• Weren’t able to attend lab? Don’t panic. Do it on your

own via link on course website.

• To get credit in the online lab system you need this info:

• Lab 1 instructions state that if Python gives an error message,

you just write “ERROR”—don’t paste in whole error message

• For the short-answer in the boolean activity, the term for

Python’s behavior is “short-circuit evaluation”

• Secret passwords for the 3 activities that ask for them:

1

4

5

Lab 1 announcement

3

• Course website:
http://www.cs.cornell.edu/courses/cs1110/2020sp/
Make sure it’s spring 2020—look for the whale-sushi
logo . We do not use Canvas.

• We will use clickers/Reef polling, but not for credit.
Therefore no need to register your clicker.

• Cornell IT working on posting lecture recording.
Thanks for your patience.

• Before next lecture, read Sections 3.1-3.3

• Install Anaconda Python 3.7 and Atom editor
according to instructions on course website

More announcements

4

Course logo for Spring 2020

5

In programming, as in life,
sometimes you're the whale;
sometimes, you're the sushi.

Keep on smiling anyway;
and remember we're here to
help you on your journey!

http://www.cs.cornell.edu/courses/cs1110/2020sp/

http://www.cs.cornell.edu/courses/cs1110/2020sp/staff/

Consulting Hours. ACCEL Lab Green Room
• Big block of time, multiple consultants (see staff calendar)
• Good for assignment help

TA Office Hours.
• Staff: 1 TA, 1 or two hours at a time (see staff calendar)
• Good for conceptual help

Prof Office Hours.
• After lecture for an hour in Bailey Hall lower lobby

• Prof. Fan has additional drop-in hours (see staff calendar)

• Prof. Lee has additional hours by appointment (use link on course
website, Staff/OH à Office Hours)

Piazza. Online forum to ask/answer questions

AEW (ENGRG 1010). “Academic Excellence Workshops”

• Optional discussion course that runs parallel to this class. See website
for more info

Helping you succeed in this class

5

HandoutSlide

http://www.cs.cornell.edu/courses/cs1110/2020sp/staff/
http://www.cs.cornell.edu/courses/cs1110/2020sp/staff/
http://www.cs.cornell.edu/courses/cs1110/2020sp/staff/
http://www.cs.cornell.edu/courses/cs1110/2020sp/staff/
https://llee-oh-appts.youcanbook.me/

Type: set of values & operations on them
From last time: Types

6

HandoutSlide

Type float:
• Values: real numbers
• Ops: +, -, *, /,//,**
Type int:
• Values: integers
• Ops: +, -, *,/, //, %, **
Type bool:
• Values: true, false
• Ops: not, and, or

Type str:
• Values: string literals
• Double quotes: “abc”
• Single quotes: ‘abc’

• Ops: + (concatenation)

One more type today:

Type: str (string) for text

7

Values: any sequence of characters
Operation(s): + (catenation, or concatenation)
Notice: meaning of operator + changes from type to type

String literal: sequence of characters in quotes
• Double quotes: " abcex3$g<&" or "Hello World!"
• Single quotes: 'Hello World!'

Concatenation applies only to strings
• "ab" + "cd" evaluates to "abcd"
• "ab" + 2 produces an error

HandoutSlide

>>> terminal time >>>

<type>(<value>)

converts value 2 to type float

converts value 2.6 to type int

…different from:
type(<value>)

which tells you the type

Converting from one type to another

8

>>> float(2)
2.0

>>>int(2.6)
2

>>>type(2)
<class 'int'>

aka “casting”

A. turn 2.6 into the integer 2,
then calculate 1/2 à 0.5

B. turn 2.6 into the integer 2,
then calculate 1//2 à 0

C. turn 1 into the float 1.0, then
calculate 1.0/2.6 à
0.3846…

D. Produce a TypeError
telling you it cannot do this.

E. Exit Python

What should Python do?

9

>>> 1/2.6

From a narrower type to a wider type
(e.g., int à float)

Python does it automatically if needed:
• Example: 1/2.0 evaluates to a float: 0.5
• Example: True + 1 evaluates to an int: 2
• True converts to 1
• False converts to 0

Note: does not work for str
• Example: 2 + "ab" produces a TypeError

Widening Conversion (OK!)

10

Width refers to information
capacity. “Wide” à more

information capacity

From narrow to wide:
boolà intà float

From a wider type to a narrower type
(e.g., float à int)

• causes information to be lost
• Python never does this automatically

What about:
>>> 1/int(2.6)

Narrowing Conversion (OK???)

11

From a wider type to a narrower type
(e.g., float à int)

• causes information to be lost
• Python never does this automatically

What about:
>>> 1/int(2.6)
0.5
Python casts the 2.6 to 2 but / is a float
division, so Python casts 1 to 1.0 and 2 to 2.0

Narrowing Conversion (OK???)

12

You Decide:
• What is the right type for my data?
• When is the right time for conversion (if

any)?

• Zip Code as an int?
• Grades as an int?
• Lab Grades as a bool?
• Interest level as bool or float?

Types matter!

13

What is the difference between:
2*(1+3) 2*1 + 3

Operations performed in a set order
• Parentheses make the order explicit

What if there are no parentheses?
à Operator Precedence: fixed order to
process operators when no parentheses

Operator Precedence

14

add, then multiply multiply, then add

HandoutSlide

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line à same
precedence
§ Read “ties” left to right

(except for **)
§ Example: 1/2*3 is (1/2)*3

• Section 2.5 in your text

• See website for more info
• Part of Lab 1

15

HandoutSlide

161/31/17Variables & Assignments

Operators and Type Conversions

Operator Precedence
Exponentiation: **
Unary operators: + –
Binary arithmetic: * / %
Binary arithmetic: + –
Comparisons: < > <= >=
Equality relations: == !=
Logical not
Logical and
Logical or

Evaluate this expression:
False + 1 + 3.0 / 3

A. 3
B. 3.0
C. 1.3333
D. 2
E. 2.0

171/31/17Variables & Assignments

Operators and Type Conversions

Operator Precedence
Exponentiation: **
Unary operators: + –
Binary arithmetic: * / %
Binary arithmetic: + –
Comparisons: < > <= >=
Equality relations: == !=
Logical not
Logical and
Logical or

Evaluate this expression:
False + 1 + 3.0 / 3

False + 1 + 1.0

1 + 1.0

2.0

An assignment statement:
• takes an expression
• evaluates it, and
• stores the value in a variable
Example:

x = 5

New Tool: Variable Assignment

18
variable

expression
equals sign
(just one!)

evaluates to 5

Value on right hand side (RHS)

is stored in variable named on

left hand side (LHS)

Executing Assignment Statements

>>> x = 5
>>>

• But something did happen!
• Python assigned the value 5 to the variable x
• Internally (and invisible to you):

19

Press ENTER and…

Hmm, looks like nothing happened…

x

memory location stored value

5

>>> terminal time >>>

Retrieving Variables

>>> x = 5
>>> x
5
>>>

20

Press ENTER and…

Interactive mode tells me the value of x

>>> terminal time >>>

In More Detail: Variables (Section 2.1)

• A variable
§ is a named memory location (box)
§ contains a value (in the box)

• Examples:

21

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

Variable names
must start with a
letter (or _).

The type belongs
to the value, not
to the variable.

HandoutSlide

In More Detail: Statements

>>> x = 5
>>>

• This is a statement, not an expression
§ Tells the computer to DO something (not give a value)
§ Typing it into >>> gets no response (but it is working)

22

Press ENTER and…

Hm, looks like nothing happened…

Expressions vs. Statements

Expression

• Represents something
§ Python evaluates it
§ End result is a value

• Examples:
§ 2.3
§ (3+5)/4
§ x == 5

Statement

• Does something
§ Python executes it
§ Need not result in a value

• Examples:
§ x = 2 + 1
§ x = 5

Value

Complex Expression

23

HandoutSlide

Look so similar
but they are not!

You can assign more than literals

>>> x = 5
>>> x = 3.0 ** 2 + 4 – 1
>>> x = 2 + x

24

“x gets 5”

“x gets the value of
this expression”

“x gets 2 plus the
current value of x”

The RHS is an expression. An
expression includes literals,
operators, and variables.

• Draw boxes on paper:
>>> x = 9

• New variable declared?
>>> y = 3

Write a new box.

• Variable updated?
>>> x = 5

Cross out old value. Insert new value.

Keeping Track of Variables

25

9x
3y
5

1. Evaluate the RHS expression, x + 2
• For x, use the value in variable x
• Write the expression somewhere on your paper

2. Store the value of the RHS expression in
variable named on LHS, x
• Cross off the old value in the box
• Write the new value in the box for x

Did you do the same thing as your neighbor ?
If not, discuss.

Task: Execute the statement x = x + 2

26

5x

HandoutSlide

Start with variable x having value 5. Draw it on paper:

27

A.

5 7x

Which one is closest to your answer?

C. 5x

B. 5x

D.

¯_(�)_/¯

7x

7x

x = x + 2

28

A.

5 7x

And The Correct Answer Is…

C. 5x

B. 5x

D.

¯_(�)_/¯

7x

7x

�

x = x + 2

Begin with this:

1. Evaluate the expression 3.0*x+1.0
2. Store its value in x

Did you do the same thing as your neighbor?
If not, discuss.

Execute the Statement: x = 3.0*x+1.0

29

7x

30

A.

Which one is closest to your answer?

C.

B.

D.

¯_(�)_/¯

x = 3.0*x+1.0

7 22.0x

7x
22.0x

7x
22.0x

31

A.

C.

B.

D.

¯_(�)_/¯

x = 3.0*x+1.0

7 22.0x

7x
22.0x

7x
22.0x

And The Correct Answer Is…

�

The command: x = 3.0*x+1.0

“Executing the command”:
1. Evaluate right hand side 3.0*x+1.0
2. Store the value in the variable x’s box

• Requires both evaluate AND store steps
• Critical mental model for learning Python

Executing an Assignment Statement

32

Have variable x already from previous
Declare a new variable:

>>> rate = 4

Execute this assignment:
>>> rate = x / rate

Did you do the same thing as your neighbor?
If not, discuss.

Exercise 1: Understanding Assignment

33

22.0x
4rate

34

A.

Which one is closest to your answer?

C.

B.

D.

¯_(�)_/¯ rate = x / rate

22.0 5.5x
4 5.5

E.

22.0x
4 5rate

22.0x
4 5.5

22.0x
4 rate
5.5raterate

rate

35

A.

C.

B.

D.

And The Correct Answer Is…

rate = x / rate

22.0x
4 5rate

22.0x
4 rate
5.5rate

22.0 5.5x
4 5.5

22.0x
4 5.5

rate

rate
�

Python is a dynamically typed language
• Variables can hold values of any type
• Variables can hold different types at different

times
The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

Alternative: a statically typed language
• Examples: Java, C
• Each variable restricted to values of just one type

Dynamic Typing

36

ç x contains an int value
ç x now contains a float value

HandoutSlide

Begin with:

Execute this assignment:
>>> rat = x + rate

Did you do the same thing as your neighbor?
If not, discuss.

Exercise 2: Understanding Assignment

37

22.0x
5.5rate

38

A.

Which one is closest to your answer?

C.

B.

D.

¯_(�)_/¯ rat = x + rate

22.0 27.5x
5.5rate

E.

22.0x
5.5 rate
27.5rat

22.0x
5.5 27.5rate

22.0x
5.5 rate
27.5rat

39

A.

C.

And The Correct Answer Is…

rat = x + rate

22.0 27.5x
5.5rate

B.

D.

22.0x
5.5 rate
27.5rat
22.0x
5.5 rate
27.5rat

�

22.0x
5.5 27.5rate

Spelling Matters!

May want to track the type in a variable
Command: type(<expression>)

Can get the type of a variable:
>>> x = 5
>>> type(x)
<class 'int'>

Can test a type with a Boolean expression:
>>> type(2) == int
True

More Detail: Testing Types

40

HandoutSlide

