http://www.cs. cor‘nell edu/courses/cslll@/z@zesp

i mmm&mw R
Lecture 22:

Subclasses & Inheritance
(Chapter 18)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

4/28/2020

Goal: Make a drawing app

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways....

caczo0

©

Sharing Work

Problem: Redundant code.

(Any time you copy-and-paste code, you are likely
doing something wrong.)

Solution: Create a parent class with shared code
= Then, create subclasses of the parent class

= A subclass deals with specific details different from
the parent class

Defining a Subclass

class Shape(): Superclass
" A shape located at xy "™ Parent class Shape
L Base class
def _init__(self, x, y): ..
def draw(self): ..
Subclass { .
Child class Rectangle Circle
class Circle(Shape): Derived class
""An instance is a circle."" Siape
def _init_(self, x, y, radius): ... _init_(selfxy)
def draw(self): ... draw(self)
class Rectangle(Shape): e T
""An in stance is a rectangle. " Rectangle(Shape) Circle(Shape)
def __init_(self, x, y, ht, len): .. __init_(self,xy, ht, len) _init_(self,xy, radius)
def draw(self): ... draw(self) draw(self)

IS

Extending Classes

class <name>(<superclass>):

Class to extend
. (may need module name:
class variables <modulename>.<superclass>)

""Class specification

initializer (_init_)
methods So far, classes have

implicitly extended
object

object and the Subclass Hierarchy

* Subclassing creates a Example
hierarchy of classes

= Each class has its own
super class or parent

= Until object at the “top”

object

object has many features
= Default operators:
—init_, _str_, _eq_ Rectangle
Which of these need to be Super class
replaced?
Square

EN

init: write new one, access parent’s

class Shape(: + Want to use the original version
""A shape @ location x,y """ of the method?
def _init__(self, x, y): = New method = original+more
selfx=x = Don't repeat code from the original
selfy=y * Call old method explicitly

class Circle(Shape):
""Instance is a Circle @ x,y with size radius""
def _init__(self, x, y, radius):
super()._init_(x, y)
self.radius = radius

4/28/2020

Can override methods; can access parent’s version

class Shape():
""Instance is shape @ x,y""
def _init__(self,x,y):
def __str__(self):
return “Shape @ (“+str(self.x)+", “+str(self.y)+")"
def draw(self)....

class Circle(Shape):
""Instance is a Circle @ x,y with radius""
def __init__(self,x,y,radius):
def __str_(self):
return "Circle: Radius="+str(self.radius)+" "+super()._str_()
def draw(self)....

Name Resolution Revisited
* To look up attribute/method name ‘

1. Look first in instance (object folder)
2. Then look in the class (folder)

* Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object
Often called the Bottom—Up Rule

¢l =Circle(1,2,4.0)

r = cl.radius id3
cl.draw()
a x[1]y
radius i

Object Attributes can be Inherited

class Shape(): a id3
‘ """ A shape @ location x,y "™

def _init__(self,x,y):

x []
selfx=x Initialized in
O selfyey Shape y [2]
initializer | ~ ---TTTTTToooo-----
radius_ 40|
class Circle(Shape):
""Instance is a Circle @ x,y with size radius"" Initialized in
def __init_(self, x, y, radius): Cirdto

1) ey
super()._init_(xy) imitanzer

self.radius = radius

¢l = Circle(l, 2, 4.0) f

Understanding Method Overriding

cl =Circle(1,2,4.0)
print(str(c))

* Which _str__do we use?
= Start at bottom class folder
= Find first method with name
= Use that definition
» Each subclass automatically
inherits methods of parent.
* New method definitions
override those of parent.

Q1: Name Resolution and Inheritance
class A(): » Execute the following:
def f(self): >»>a=A()
| return self.g() >»> b =B()
def glself): « What is value of af()?
| return10 A: 10
B: 14
class B(A): C:5
D: ERROR
t‘ier'gt(:frtf%l‘ E: I don't know
def h(self):
| return18 12

4/28/2020

Q2: Name Resolution and Inheritance
class AD: Execute the following:
def f(self): >»>a=A()
t f. »> b= .
rem setof =0 Start next video:
def g(self): « What is value of h.f()? . .
return 10 10 Design choices for
B: 14 method draw
class B(A): C:5
| D: ERROR
?ef-ft(j:,ﬁ'z. E: I don't know
def h(self):
| return18 14 6

Demo using Turtle Graphics Who draws what?
. GENES class Shape(): @8 B
A turtle holds a pen and can draw as it walks! Follows mn\foves pen to correct location™ Note: need to import the turtle module
simples commands: ' def draw(self): ;/r?éc:nﬁ)r‘:\iusi :;) ;:fwe apenona2D
* setx, sety — set start coordinate turtle.penup(
e pendown, penup — control whether to draw when moving -penup No matter the sha
« forward turtle.setx(self.x) 0 er the shape, we
e turn turtle.sety(self.y) Jg,rl: for | Want to pick up t}‘.le pen,
turtle.pendown() ape | move to the location of the
Part of the turtle module in Python (ocs pyhon.ore/3 7ibrary/turtie humi) class Circle(Shape):]S;lape, Fut hthe }Iljen down.
. P . : ut only the shape
You don need to k}’lOW i . . . ""'Draws Circle"" Job for subclasZes knOthOW to do
* Just a demo to explain design choices of draw() in our def draw(self): subclasses A
classes Shape, Circle, Rectangle, Square super(dr.awo the actual drawing.
17 turtle.circle(self.radius) ‘ See shapes.py, draw_shapes.py ‘ 18

Class Variables can also be Inherited

class Shape(): # inherits from object by default object
""Instance is shape @ x,y""
Class Attribute tracks total num shapes
Start next video: NUM.SHAPES = 0 SrapelGirds)
Class attributes Nasuees [0 |
class Circle(Shape):
""|nstance is a Circle @ x,y with radius™”
Class Attribute tracks total num circles Circle
NUM_CIRCLES = 0 NUM_CIRCLES E
19 20

Q3: Name Resolution and Inheritance

4/28/2020

class A(): .
x =3 # Class Variable » Execute the following:
y =5 # Class Variable > a=A()
def f(self): >>b=B(
- return self.g(+ What is value of b.x?
def g(self):
| return10 A4
B:3
class B(A):
y=4 # Class Variable C:. 42
z=42 # Class Variable D: ERROR
def g(self): E: I don't know
| return14
def h(self):
| return18 21

Q4: Name Resolution and Inheritance

Why override _eq__? Compare equality

class Shape():
""Instance is shape @ x,y"
def _init__(self,xy):
def _eq_(self, other):

of

return self.x == other.x and self.y == other.y

A0
s e
comp?! o
class Circle(Shape): Want mup (d““a;-\d of the
Ly
""Instance is a Circle @ x,y with radius"" the :-;nces, 0‘\\
def __init__(self,x,y,radius): “\: o \“S\B“Ces’

def _eq_(self, other):

return self.radius == other.radius and super().__eq__(other)

class AQ: .
x=3 % Class Variable » Execute the following:
y =5 # Class Variable »>a=A()
def f(self): >>> b =B()
return self.g(+ What is value of a.z?
def g(self):
return 10 A4
B:3
class B(A):
y=4 #Class Variable C:42
z=42 # Class Variable D: ERROR
def g(sel): E: I don't know
return 14
def h(self):
return18 23
eqvs. is
== compares equality aa
1
is compares identity
, ot | idd | x
cl = Circle(l, 1, 25)
. c2| idS y
¢2 = Circle(1, 1, 25) —_—
c3=c2
id5
cl==c2?
clisc2?
y
== ')
2==c3? radius [25 |
c2isc3?

The isinstance Function

isinstance(<obj> <class>)

= True if <obj>’s class is same as or ¢l Obl:e:d

a subclass of <class>

= False otherwise id4
Example: Shape
1 =Circle(1,2,4.0) X @
= !s!ns:ance(c:,glhrcle) 1‘s Trrue y
isinstance(cl,Shape) is True — crad

isinstance(cl,object) is True

isinstance(cl,str) is False O

* Generally preferable to type

= Works with base types too!

QS5: isinstance and Subclasses

>> s = Rectangle(0,0,10,10)
>>> isinstance(sl, Square)

m
ids
Rectangle ﬂ
A: True x[1]
B: False y
C: Error
D: I dont know ﬂ

AS5: isinstance and Subclasses

>> 5] = Rectangle(0,0,10,10)
>>> isinstance(s], Square)
m

A: True

B: False

C: Error

D: I don't know

object
“extends” T
or “is an instance of”
Shape
“extends”
or “is an instance of”
Rectangle
“extends” T
or “is an instance of”
Square

4/28/2020

