http://
J & . 0 “i ﬁ 3 -“\ N ? h'* y & r».'.‘f._ B S\ <

Lecture 22:

Subclasses & Inheritance
(Chapter 18)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Goal: Make a drawing app

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways....

G000

Sharing Work

Problem: Redundant code.

(Any time you copy-and-paste code, you are likely
doing something wrong.)

Solution: Create a parent class with shared code
= Then, create subclasses of the parent class

= A subclass deals with specific details different from
the parent class

Defining a Subclass

class Shape(): Superclass
""A shape located at x,y "™ Parent class Shape
o Base class
def _init__(self, x, y): ..
def draw(self): ...
Subclass R l
Child class ectangle

class Circle(Shape): Derived class

""An instance is a circle.
def _init__(self, x, y, radius): ...
def draw(self): ...

class Rectangle(Shape):
""An in stance is a rectangle.
def _init__(self, x, y, ht, len): ...
def draw(self): ...

Circle

Extending Classes

class <name>(<superclass>):

""Class specification™" Class to extend
_ (may need module name:
class variables <modulename>.<superclass>)
initializer (_init_)
4)

methods So fqr,.classes have

implicitly extended

object

object and the Subclass Hierarchy

* Subclassing creates a
hierarchy of classes

= FEach class has its own
super class or parent

= Until object at the “top”
object has many features

= Default operators:
_nit__, _str__, __eq

Which of these need to be
replaced?

Example

object

Shape Super super class]
Rectangle — }
Square

__Init__: write new one, access parent’s

class Shape(): * Want to use the original version
"""A shape @ location x,y """ of the method?
def __init__(self, x, y): = New method = original+more
self.x = x = Don't repeat code from the original
selfy=y * Call old method explicitly

class Circle(Shape):
""Instance is a Circle @ x,y with size radius™
def __init__(self, x, y, radius):

super().__init__(x, y)

self.radius = radius

Object Attributes can be Inherited

class Shape():
""" A shape @ location x,y "™

def _init__(self x,y):
self.x =x

self.y=y
class Circle(Shape):
def __init__(self, x, y, radius):

super().__init__(x,y)
self.radius = radius

cl = Circle(l, 2, 4.0)

cl

1d3

Initialized in

Shape

initializer

"""|nstance is a Circle @ x,y with size radius

1d3
Circle
X 1
y 2
radius| 4.0

Initialized in

Circle
initializer

Can override methods; can access parent’s version

class Shape():
""Instance is shape @ x,y
def __init__(self,x,y):
def __str__(self):
return "Shape @ (“#str(self.x)+", "sstr(self.y)+")"
def draw(self)....

class Circle(Shape):
""Instance is a Circle @ x,y with radius
def _init__(self,x,y,radius):
def __str__(self):

return "Circle: Radius="+str(self.radius)+
def draw(self)....

+super().__str__()

Understanding Method Overriding

cl = Circle(1,2,4.0)
print(str(c1))

e Which _str__do we use?
= Start at bottom class folder

= Find first method with name
= [Use that definition

» Each subclass automatically
inherits methods of parent.

* New method definitions
override those of parent.

Name Resolution Revisited
To look up attribute/method name ‘

1. Look first in instance (object folder)
2. Then look in the class (folder)

* Subclasses add two more rules:

3. Look in the superclass

4. Repeat 3. until reach object
Often called the Bottom—Up Rule

c1 = Circle(1,2,4.0)
r = cl.radius
cl.draw()

Circle

c1[id3 > xL1 | yL2
radius| 4.0

Q1: Name Resolution and Inheritance

class A():

def f(self):
. return self.g()

def g(self):
" return10

class B(A):

def g(self):
" return 14

def h(self):
" return 18

» Execute the following:
>»>> 3 = A()
>>> 1) = B()

» What is value of a.f()?

A: 10

B: 14

C:5

D: ERROR

E: I dont know

12

Q2: Name Resolution and Inheritance

class A():

def f(self):
. return self.g()

def g(self):
" return10

class B(A):

def g(self):
" return 14

def h(self):
" return 18

» Execute the following:
>»>> 3 = A()
>>> 1) = B()

» What is value of h.f()?

A: 10

B: 14

C:5

D: ERROR

E: I dont know

14

Start next video:
Design choices for
method draw

16

Demo using Turtle Graphics

3l

A turtle holds a pen and can draw as 1t walks! Follows
simples commands:

* setx, sety — set start coordinate

* pendown, penup — control whether to draw when moving

e forward
* turn

Part of the turtle module in Python (oes python.ore/3 71ibrary/turtic. himi)

* You dont need to know it

« Just a demo to explain design choices of draw() in our
classes Shape, Circle, Rectangle, Square

17

Who draws what?

class Shape():
"""Moves pen to correct location

mum Note: need to import the turtle module
which allows us to move a pen on a 2D

def draw(self): grid and draw shapes.
turtle.penup() -
turtle.setx(self.x) No matter the shape, we
turtle.sety(self.y) Job for | Want to pick up the pen,
turtle.pendown() shape | move to the location of the
shape, put the pen down.
class Circle(Shape): “But only the shape
""Draws Circle™ loblor 1 gybelasses know how to do
def draw(self): ubelises the actual drawing.

super().draw()
turtle.circle(self.radius) See shapes.py, draw_shapes.py I3

Start next video:
Class attributes

19

Class Variables can also be Inherited

class Shape(): # inherits from object by default
""Instance is shape @ x,y""

Class Attribute tracks total num shapes
NUM_SHAPES =0

class Circle(Shape):
""Instance is a Circle @ x,y with radius
Class Attribute tracks total num circles

NUM_CIRCLES =0

20

Q3: Name Resolution and Inheritance

class A():
x = 3 # Class Variable
y =5 # Class Variable

def f(self):
. return self.g()

def g(self):
" return10

class B(A):
y=4 # Class Variable
z =42 # Class Variable

def g(self):
' return 14

def h(self):
' return 18

» Execute the following:

>»>> 3 = A()
>>>) = B()
* What 1s value of h.x?

A: 4

B:3

C:42

D: ERROR

E: I dont know

21

Q4: Name Resolution and Inheritance

class A():
x = 3 # Class Variable
y =5 # Class Variable

def f(self):
. return self.g()

def g(self):
" return10

class B(A):
y=4 # Class Variable
z =42 # Class Variable

def g(self):
' return 14

def h(self):
' return 18

» Execute the following:

>»>> 3 = A()
>>>) = B()
* What 1s value of a.z?

A: 4

B:3

C:42

D: ERROR

E: I dont know

23

Why override _eg__ ? Compare equality

class Shape():

""Instance is shape @ x,y
def _init__(self,x,y):
def _eq__(self, other):

return self.x == other.x and self.y == other.y

class Circle(Shape):

""Instance is a Circle @ x,y with radius
def _init__(self,x,y,radius):

def _eq__(self, other):

return self.radius == other.radius and super().__eq__(other)

eq vs. Is

== compares equality

IS compares identity

cl = Circle(l, 1, 25)
c2 = Circle(l, 1, 25)
c3=c2

cl==c2?
clisc2?
c2==c37?
c2isc3?

cl

c3

id4
Circle
id4 w1
ids yL |
radius| 25
id5
id5
Circle
X 1
y 1
radius| 25

The I1sinstance Function

isinstance(<obj>,<class>)

* True if <obj>’s class is same asor ¢l| id4

a subclass of <class>

= False otherwise id4
Example: Circle
cl = Circle(1,2,4.0) e

= jsinstance(cl,Circle) is True y[2

= jsinstance(cl,Shape) is True cadivs | 4.0

= jsinstance(cl,object) is True
= jsinstance(clstr) is False

* Generally preferable to type
= Works with base types too!

object

§ L

Circle

4

28

Q5: isinstance and Subclasses

>>> s = Rectangle(0,0,10,10)

>>> jsinstance(sl, Square) sl| idS
77
id5
Rectangle
A: True -
B: False yL 2
C: Error
D: I dont know

AS: Isinstance and Subclasses

>>> s = Rectangle(0,0,10,10)

>>> isinstance(s], Square)
777

A: True

B: False

C: Error

D: I dont know

object

“extends” T
or “is an instance of”’
Shape

“extends”’
€€ * . ')y
or “is an instance of

Rectangle

“extends’”’ T
€€ * . ')y
or “is an instance of

Square

30

