
 1

CS100M
Introduction to Computer Programming

Spring 2004
Lectures 21-22

OOP & References

 2

Announcements
● A5 due
● A6 is last assignment
● Prelim 3: Tuesday

– Topics include all Java up to and including this lecture
– Review material, room, review session in Prelims (review

session will be Sunday)
– Structure of exam

 3

Summary/Overview
● Problem solving with OOP

– Nouns: class, field, local var, constant
– Verbs: method, operator

● Encapsulation:
– Has-a relationship
– Information hiding

● Mechanics of OOP
– References and objects
– Pass by Value
– this
– aliases

 4

Reference
● Rem:

– Operator new returns reference to a newly created object
 new Thing()

– Reference variable is a variable that stores the reference
to an object:
 Thing t = new Thing();

● Questions:
– Does t store the object?

eg)
– What is a reference?

eg)
– Can you directly use references?

eg)

1

 5

Rough Memory Model
● The Stack: Methods and local variables:
● The Heap: Objects and their fields
● Reference: address

 6

Reference Values
● Java does not allow explicit changes:

 Thing t=new Thing();
 t = 1027; //crap!

● Use toString to help see references:
– If you do not provide a toString method, Java gives

you a default version
– Default version usually returns a String version of the

object's address in memory
– Not really useful except when learning about references

 7

Example
public class References {
 public static void main(String[] args) {
 Thing1 t1 = new Thing1();
 System.out.println(t1);
 System.out.println(new Thing1());
 System.out.println(new Thing2());
 }
}

class Thing1 { }

class Thing2 {
 public String toString() {
 return "hello";
 }
}

 8

Special References
● null

– Placeholder for “no object”
– Effectively, a “zero address”
– Why bother? Think of variable rules...

● this
– Means, “the current object”
– Two places to use:

● As a reference to the current object to access the object's
fields or methods without worrying about scope

● As a way to call another constructor from a constructor

2

 9

Example
public class SpecialRefs {
 public static void main(String[] args) {

 Person p1,p2; // current value?
 p1 = new Person("Dimmu",null);
 p2 = new Person("Borgir",null);
 p1.setFriend(p2.getMe());
 p2.setFriend(p1.getMe());
 System.out.println(p1);
 System.out.println(p2);
 }
}

class Person {
 private String me; // value?
 private String friend; // value?
 public Person(String me, String friend) {
 this.me = me;
 this.friend = friend;
 }
 public void setFriend(String friend) {
 this.friend = friend;
 }
 public String getMe() {
 return me;
 }
 public String toString() {
 return "I am "+me+", and my friend is "+friend+".";
 }
}

 10

Aliases
● Can't change reference values but you can “pass” them!
● Example

 Thing t1, t2;
 t1 = new Thing()
 t2 = t1;
 t2.changeSomething();
 // what happens to t2? object?

● Alias: variable that refers to the same object as another
variable
– References help to connect data together (data structures)
– Alias provides mechanism to move “pointer” in data
– Alias also way of swapping (min, max, ...)
– Helps to allow methods to change data “inside” an object

 11

Example
public class Aliases2 {
 public static void main(String[] args) {
 Book b1 = new Book("Stand on Zanzibar");
 System.out.println(b1);
 Book b2 = b1;
 b2.pages = 100;
 System.out.println(b1.pages);
 }
}

class Book {
 public int pages;
 public String name;
 public Book(String name) {
 this.name=name;
 }
 public String toString() {
 return name;
 }
}

 12

Pass By Value
● Reminder: all methods pass by value

– Parameter values are copied from actual arguments to
formal parameters

– No way in Java to pass an “entire” variable
● What if scenario?

– Create an object and store in a var
– “Pass the var” (actually, just the val) to another method
– What happens to the variable? Object? Fields?

● Example:
– See next page...
– Then see the page that follows....

3

 13

Motivating Example
public class Pass1 {

public static void main(String[] args) {
Person p = new Person();
p.name = “Dimmu”;
change(p);
System.out.println(p);

}
public static void change(Person p) {

p.name = “Borgir”;
p = null;

}
}
class Person {

public String name;
public String toString() { return name; }

}

 14

What is happening?!?
● Recall these rules:

– Variables store values
– Reference variables store object addresses, which must

also be values
– Java methods pass values to input parameters
– Scope of variables: look at current block; not found? See

enclosing block (and so forth)
● Method parameters and local variables never seen outside

method
● Only variables seen outside of method are fields (need to use
this if field and method name the same)

– Dot operator used in syntax var.member to access
member of object that var refers to

– Alias: ref that has the same address as another ref

 15

Putting it together
● You cannot change an object by resetting a variable in

another method!
● But you can “get inside” an object and change its fields

and access its members because an aliased variable will
share the same object!

● Now go back and review previous example
● Another example....

 16

Example
public class Aliases {
 public static void main(String[] args) {
 Person p1 = new Person("Dimmu");
 Person p2 = new Person("Borgir");
 p1.makeFriends(p2);
 System.out.println(p1);
 System.out.println(p2);
 }
}

4

 17

Example Continued
class Person {
 private String name;
 private Person friend;
 public Person(String name) {

this.name = name;
}

 public void setFriend(Person friend) {
this.friend = friend;

}
 public void makeFriends(Person friend) {
 friend.friend = this;
 this.friend = friend;
 }
 public String toString() {
 return "I am "+name+", and my friend's name is "+

friend.name+".";
 }
}

 18

Static
● The gist:

– Sometimes you want a mechanism for accessing members
without creating an object

– Modify a member (nothing else!!!) with static
modifier

– So, static fields will be shared by all objects of the same
class!

● Syntax for accessing a static member:
Classname.member

● You can also use standard OOP techniques to create
objects and access members

 19

Syntax Example
public class StaticTest {
 public static void main(String[] args) {
 Person.name = "Zardoz";
 Person p = new Person();
 p.name = "John";
 Person q = new Person();
 System.out.println(p);
 System.out.println(q);
 }

}

class Person {
 static String name;
 public String toString() { return name; }
}

 20

More Practical Example
class Student {
 private String name;
 private static int count;
 public static int currentYear;
 public static final int GRADYEAR = 2005;
 public Student(String name) {
 this.name=name;
 count++;
 }
 public static int getCount() { return count; }
}

public class StaticTest2 {
 public static void main(String[] args) {
 System.out.println(Student.GRADYEAR);
 Student s1 = new Student("Dani");
 Student s2 = new Student("Shagrath");
 Student.currentYear = 2001;
 System.out.println(s2.currentYear);
 System.out.println(Student.getCount());
 }
}

5

