
 1

CS100M
Introduction to Computer Programming

Spring 2004
Types

 2

Announcements
� GDIAC (The Game Design Initiative at Cornell)
� Open House:

� Wed, May 12
� 3:30-6:30
� Upson 315, 319
� Course info? CIS 300

� Final exam info
� see Final Exam link on course website
� early review: see leftover questions (arrays, inheritance,

sorting, lists) on old Prelim3s
� I'll also post more questions (1 or more old finals)

 3

Motivation
� Problem solving

� non-OOP
� OOP

� Redunancy?
� related classes that repeat code
� want to avoid copying code

� Inheritance and subtyping to the rescue!

 4

Type Taxonomy
� Thing

� Place
� ?
� ?

� Creature
� ?
� ?

� Ideas:
� looking for classifications of classes
� identify "higher" classifications of "lower" classes
� high:

� more general
� can be expressed in many ways

� low:
� more specific, additional features not seen in general
� cannot be used to classify other classes so easily

1

 5

Why is this cool?
public class Test1 {

public static void main(String[] args) {
Person[] p = { new Student(123456),

new Faculty(123456) };
for (int i=0; i<p.length; i++)

System.out.println(p[i].getID());
}

}

class Person {
protected int id;
public Person(int id) {this.id = id;}
public int getID() { return id; }

}
class Student extends Person {

public Student(int id) { super(id); }
}
class Faculty extends Person {

public Faculty(int id) { super(id); this.id *= 10; }
}

 6

Inheritance
� Terms:

� inheritance: code "copied" from one class to another
� extensibility: extend behavior of a class to another
� code reuse: copy code from one class to another
� subtyping: generalize notion of types

(things can be other things)
� more terms coming...

� Picture:
conceptual classes&code

 7

Super/Sub Types
� Classifiction of type:

� Supertype, superclass, base class
� Subtype, subclass, derived class

� Relationship:
� supertype variable can get value of that type or a subtype

eg) Animal x = new Platypus();
� need syntax to tell Java that Animal and Platypus are

related
� subtype variable get supertype value? need syntax (cast!)

� Three mechanisms for relating types in Java:
� primitives—promotion for some!
� inheritance—extending a class
� interface—specifying the type, methods, constants for a

class, but not the bodies of the methods

 8

Primitives
� Not really part of inheritance, but helps
� Compare doubles, ints, and chars

� what's the supermost supertype?
� what's the submost subtype?
� what's the visualization?

� Relating supertypes and subtypes:
� double can get int?
� what happens to the int value?

� How to go in reverse?
� can an int get a double?
� what's the mechanism?

� Why does all of this work?
� examples of the types are related (built-in)!

2

 9

Example
public class Primitives {
 public static void main(String[] args) {

 double d;
 int i;

 d = 7.2; // ok? why?
 d = 7; // ok? why?

 i = 7; // ok?
 d = i; // ok?
 // System.out.println(d); // output?

 // i = d; // is this is bad ... why?
 }
}

 10

Inheritance: Intro
� OOP rem:

� you define the types!
� collect data and ops in one place (the class, also the type)

� To relate types:
� find the nouns that will become classes
� see if the classes are related somehow
� connect the classes with new syntax and rules

� Syntax glimpse:
�class Coin { } // most general
�class Penny extends Coin { } // specific
�class Dime extends Coin { }
�class CanadianPenny extends Penny { }

� So... class Sub extends Super { }
� "Mostest generalest" class of all time?
� There's much more to come next lecture...

 11

Inheritance Continued
� Upcasting:

� supertype variable can store subtype reference
� why? more general thing can be represented as more

specific thing
� eg: Human can be a Man, Human can be a Woman
� eg: Coin can be a Penny, Coin can be a Dime

� Code:
�class Human {}
�class Woman extends Human {}
�class Man extends Human {}
�Human h1 = new Human(); // OK
�Human h2 = new Man(); // OK
�Human h3 = new Woman(); // OK

 12

Upcasting
� Upcasting Syntax:
�Supertype var = new Subtype(...)

� Type on LHS:
� variable is supertype
� ref must be that supertype

� Type of object:
� object still has its own type and knows its own type
� useful for accessing methods!

� Type of RHS:
� promotion: Java checks if object type extends the LHS

supertype
� if so, Java declares the value of the whole RHS as the

supertype, which means the LHS matches the type
� object's known type is NOT changed

3

 13

Demo of Upcasting
class Human {}
class Woman extends Human {}
class Man extends Human {}

class Human {}
class Woman extends Human {}
class Man extends Human {}

public class UpCast {
 public static void main(String[] args) {
 Human h1 = new Human(); // OK
 Human h2 = new Man(); // OK
 Human h3 = new Woman(); // OK
 System.out.println(h2);
 System.out.println(new Woman() instanceof Human);
 System.out.println(h3 instanceof Human);
 }
}

 14

Downcasting
� Can't always make a specific thing into a general thing

� which of these is OK?
A Dog is a Creature. A Creature is a Dog.

� maybe the Creature in question happens to be a Dog.
� need to provide more information assist!

� Syntax:
�Sub var = (Sub) new Super(...)
� how to remember? int i = (int) 7.7
� downcasting is not always legal

� Pattern:
� upcasting is always legal for inheritance relationship
� so, can use superclass variables to store "very sub"

subclass objects, which can be used in "mid sub" refs
� see next page...

 15

Downcast Example
public class DownCast {
 public static void main(String[] args) {
 Coin c = new SteelPenny();
 Penny p = (Penny) c;
 System.out.println(p);
 }
}

class Coin { }
class Penny extends Coin {}
class SteelPenny extends Penny { }

 16

More to Inheritance
� Still need to explain

� how to automatically copy code
� how to use privacy modifiers
� how to override methods
� how to chain constructors
� design issues
� all next lectures

� Back to types...
� can you extend more than one class to share types?
�class Transgendered extends Man, Woman {}

� sorry, no multiple inheritance (so, example above is bad!)
� there's a workaround...

4

 17

Interfaces
� Interface: many uses and meanings

� "sparse class" (constants, method headers)
� specification to be implemented by a class
� definition of a type (don't have to worry about class)

� Syntax:
�interface ISomething {

�constants
�methodheaders

�}
�class C implements I1, I2, ... { ... }

 18

Why Useful?
� Some rules for class:

� class that implements an interface must define all the
methods of the interface

� why useful for developers? keeps consistent methods!
� Treating interface as a type
�IName var = new something()
� the object must implement the interface
� if you say var.method(...), the method header must

be in the interface and implemented in the class
� Some interfaces are built-in:

� java.lang: Comparable defines a compareTo
method (see OOP lecture)

� java.util: Collection has many data structure
methods

 19

Interface Example
public class Interfaces {
 public static void main(String[] args) {
 Coin[] c = {new Penny(), new Dime(), new Dime() };
 int pocket = 0;
 for (int i=0; i<c.length; i++)
 pocket += c[i].getValue();
 System.out.println(pocket);
 }
}

interface Coin {
 public int getValue();
}

class Penny implements Coin {
 public int getValue() { return 1; }
}

class Dime implements Coin {
 public int getValue() { return 10; }
}

5

