
 1

CS100M
Introduction to Computer Programming

Spring 2004
Inheritance
Summary

 2

Announcements
� Game Open House:

� Wed, May 12, 3:30-6:30,Upson 315, 319
� www.cs.cornell.edu/projects/game

� A6, Lab
� course evaluations: part of your grade!

http://www.engineering.cornell.edu/courseeval
� Final exam, review, etc

 3

Motivation/Overview
� Classes as types
� Try to link related classes for code reuse

� subtyping: create a subcategory of another type
� polymorphism: can use multiple types to manipulate

objects
� keyword: extends

� How to use code reuse? inheritance
� to say code is inherited means that it is copied to a

subclass
� for code reuse, you do not actually rewrite the code

� Rules for...
� members (fields, methods for CS100) can be inherited
� constructors: not inherited—they need their own rules

 4

Aliases
� Reminders:

� upcasting is legal (always works)
�Supertype var = new Subtype(...)

� downcasting requires a cast (might not work)
�Subtype var = (Subtype) new Supertype(...)

� A bit more about subtyping: aliases?
�Coin c1 = new Dime();
�Coin c2 = new Penny();
�c2 = c1;

1

 5

Inheritance of Fields
� inheritance of public fields:

� automatically inherited
� values set for current object, but

code used is from superclass
� avoid: shadowing fields (public fields with same names

in super and sub classes)
� access of fields:

� use type of reference (not actual object type) to access
� rule really affects special cases of shadowing and
private fields

 6

Basic Field Example
public class Fields {
 public static void main(String[] args) {
 Student s = new Student();
 s.name = "Borgir";
 System.out.println(s);
 Person p = new Student();
 p.name = "Dimmu";
 System.out.println(p);
 }
}

class Person {
 public String name;
}
class Student extends Person {
 public String toString() { return "Student: "+name; }
}

 7

Methods and Overriding
� inheritance of public methods:

� automatically inherited unless overriden (see below)
� dynamic method binding: use actual object type to

access
� overriding:

� inherited method uses fields that have also been inherited
� maybe the subclass should have a different behavior?

� you can write the same method header in the subclass
� the method body differs
� the subclass method is said to override the superclass

method

 8

Basic Methods Example
public class Methods {
 public static void main(String[] args) {
 Rectangle[] data = { new Rectangle(), new Square()};
 data[0].setSides(2,3);
 data[1].setSides(2,2);
 for (int i=0; i < data.length; i++)
 System.out.println(data[i].getArea());
 data[1].setSides(3,4);
 }
}
class Rectangle {
 public double width;
 public double height;
 public double getArea() { return width*height; }
 public void setSides(double w, double h) {
 width = w; height = h;
 }
}
class Square extends Rectangle {
 public void setSides(double s1, double s2) {
 if (s1!=s2) {
 System.out.println("not a square!");
 System.exit(0);
 }
 width = height = s1;
 }
}

2

 9

Accessing Superclass Members
� Sometimes you want to access a superclass's member

� fields? you usually inherit fields, so not common, since
inherited fields are already "in" subclass

� methods? sometimes you do need to access the superclass
version of the method

� super
� meaning: the immediate superclass member
� syntax: super.member

� member must be public
� member must be in the immediate superclass!

so, no super.super.....

 10

Overriding Example

class Square extends Rectangle {
 public void setSides(double s1, double s2) {
 if (s1!=s2) {
 System.out.println("not a square!");
 System.exit(0);
 }
 super.setSides(s1, s1);
 }
}

 11

Information Hiding and Inheritance
� information hiding and abstraction

� good style for OOP!
� problem with private: involves blizzard of more rules
� solution: allow subclasses to access superclass members

but not let non-related classes have access: protected
� rules:

� style: private members (fields and internally-used
methods) now become protected

� syntax: effectively private for the same package
(defined group of classes) but not for outside class

� what's best? private if possible
� see also package visibility (no modifier)

 12

Information Hiding Example
class Rectangle {
 protected double width;
 protected double height;
 public double getArea() { return width*height; }
 public void setSides(double w, double h) {
 width = w;
 height = h;
 }
}

class Square extends Rectangle {
 public void setSides(double s1, double s2) {
 if (s1!=s2) {
 System.out.println("not a square!");
 System.exit(0);
 }
 super.setSides(s1, s1);
 }
}

3

 13

Constructor Chaining
� Constructors aren't members, so...

� they don't inherity
� but they do call each other
� concept: superclasses set general info for subclasses, and

subclasses handle their own specific info
� Gist of chaining....

 14

More Constructor Chaining
� Rules:

� all classes must have a constructor
� if you do not provide a constructor, Java provides the

empty constructor as the default
� 1st statement of constructor must be call to another

constructor of same class (this(...)) or a call to the
immmediate superclass constructor (super(...))

� if you do not provide a super(...), Java will call
super(), which means the superclass better have an
empty constructor! (see 2nd rule)

 15

Constructor Rules (continued)
� Order of construction

� set all fields to default values of "zero" even if they have
an assignment statement!
eg) the field assignment int x = 9; means x gets 0

� invoke only the chain of this(...) and super(...)
(constructor invocation)

� at the "top" you reach Object's constructor and...
� Set all the field assignments (if any) for the top class
� Execute the rest of the top's constructor (constructor

execution)
� Go to next highest subclass in the chain and repeat

� Why bother?
� actually, usually you don't need to
� sometimes need to know when fields are set
� affects shadowing, which you should avoid

 16

Constructors Example
public class Constructors {
 public static void main(String[] args) {
 System.out.println(new Cube(1,2,3).volume());
 }
}

class Line {
 protected int width;
 public Line(int width) { this.width = width; }
}

class Square extends Line {
 protected int height;
 public Square(int width, int height) {
 super(width);
 this.height=height;
 }
}

class Cube extends Square {
 protected int depth;
 public Cube(int width, int height, int depth) {
 super(width,height);
 this.depth=depth;
 }
 public int volume() {
 return depth*height*width;
 }
}

4

 17

More Information Hiding
(advanced!)

� package
� group classes together
� syntax: package name;
� first statement of program
� see Savitch 5.7

� private members "bind to their class "
� no overriding! no external access, even by subclass and
super

� need to provide public members in subclass to access a
private member

� "bind to their class": called static binding: assocation
created when compiling

� dynamic binding: when associations occur at run time

 18

Information Hiding (continued)
� static:

� also set at compile time, no dynamic binding
� consequence: static methods cannot be overridden
� if you have two static methods with same header, they

are completely different methods with no relation to
eachother! (bad style)

� someone ask me why the name static is now
explained...

� final:
� fields? cannot change after initialization and constuctor

sets
� methods? cannot override
� classes? cannot make subclass

 19

Example
public class Shadowing {
 public static void main(String[] args) {
 A a = new B();
 a.test4();
 }
}

class A {
 public int x;
 public A() { test1(); test2(); test3(); }
 private void test1() { System.out.println(x); }
 public void test2() { System.out.println(x); }
 public void test3() { System.out.println(x); }
 public static void test4() { System.out.println("Hi"); }
}

class B extends A {
 public boolean x = true;
 private void test1() { System.out.println(x); }
 public void test3() { System.out.println(x); }
 public static void test4() { System.out.println("Bye!"); }
} 20

Class Object
� Object: Superest superclass of them all!

� source of toString, equals, and others
� see API for full list

� Uses
� generic code! data structure can hold pretty much

anything
� convenience methods (see above)

5

 21

Object Example
// color constants for boxes
interface Color {
 public final int BLUE = 0;
 public final int RED = BLUE+1;
 public final int YELLOW = RED+1;
}

// handy dandy random int generator
class MyMath {
 public static int randInt(int low, int high) {
 return (int) (Math.random()*(high-low+1)) + (int)low;
 }
}

 22

Object Example Continued
class Box implements Color {

 private int color;

 public Box(int color) {
 this.color=color;
 }

 public int getColor() { return color; }

 public boolean equals(Object other) {
 return color==((Box)other).color;
 }

 public String toString() {
 switch (color) {
 case Color.BLUE:
 return "Blue";
 case Color.RED:
 return "Red";
 case Color.YELLOW:
 return "YELLOW";
 default:
 return "UNKNOWN";
 }
 }
}

 23

Object Example Continued
public class Boxes implements Color {
 public static void main(String[] args) {

Box[] b = { new Box(randColor()),
 new Box(randColor()),
 new Box(randColor()) };

 Box target = new Box(Color.BLUE);

 System.out.println(target);

 boolean found = false;
 for (int i=0 ; i < b.length ; i++) {
 System.out.println("Box "+i+": "+b[i]);
 if (target.equals(b[i])) found = true;
 }

 System.out.println("Blue box found? " + found);

 }

 public static int randColor() {
 return MyMath.randInt(Color.BLUE,Color.YELLOW);
 }

}

 24

Abstract Classes
� Design issues:

� completely specify full class hierarchy
� specify only types (interfaces, which can include

constants and method headers)
� anything inbetween?

� abstract class
� partially specified class
� can contain at least one abstract method (no body)
� cannot make objects from abstract class

� syntax for abstract class, abstract method:
�modifiers abstract class Name { ... }
�modifiers abstract RetType Name(...) ;

6

 25

Abstract Class Example

public class Abstract {
 public static void main(String[] args) {

 Shape[] data = { new Rectangle(3,2), new Square(3) };

 for (int i=0; i < data.length; i++)
 System.out.println(data[i].getArea());

 }
}

abstract class Shape {
 public abstract double getArea();
}

abstract class Triangle extends Shape { }

 26

Abstract Class Example (continued)

abstract class Quadrilateral extends Shape {
 protected double s1,s2,s3,s4;
 public Quadrilateral(double s1, double s2, double s3, double s4) {
 this.s1=s1; this.s2=s2; this.s3=s3; this.s4=s4;
 }
}

class Rectangle extends Quadrilateral {
 public Rectangle(double s1, double s2) {
 super(s1,s2,s1,s2);
 }

 public double getArea() { return s1*s2; }

}

class Square extends Rectangle {
 public Square(double s) {
 super(s,s);
 }
}

 27

Interface vs Abstract
� interface resembles a completely abstract class
� abstract:

� need to reuse code
� abstract class resembles a repository
� also helps define classification scheme from a very high

to low level
� interface:

� want to share method name, but perhaps little relation
� building a hierarchy would take a lot of abstract classes
� worried only about subtyping, not code reuse

� examples?

 28

Design Revisted
� brainstorm
� research: nouns, verbs

� nouns:
� constant, whole noun? field, local, constant, static (sharing)
� composite noun? class
� class related to another class, code reuse? inheritance
� class relation, no code reuse? interfaces

� verbs:
� known operation? operator
� action you define and name? method

7

 29

More Design
� outline:

� algorithm, steps to solve problem
� pseudocode to keep general
� stepwise refinement: write and test a little bit at a time
� stubbing: define all class and method signatures (use

interfaces to ensure consistency)
� top-down:

� start at top of stubs
� comment and write and test

� bottom-up:
� start in utility methods, utility classes
� test code with basic test cases and build up

 30

More Design
� polishing:

� baby steps!!!
� special trick...?

� testing:
� test cases up front?
� known, simple values by hand
� exhaustive test cases?
� special checks inside program?

� iteration?

8

