
 1

CS100M
Introduction to Computer Programming

Spring 2004
Lectures 23-24

Java Data Structures

 2

Announcements
● A6 is last assignment
● Prelim 3: Today!

– A-G in OH 255
– H-N in HO B14
– O-Z in UP B17

● Remaining work:
– Chapters 6, 10
– Chapter 7

 3

Motivation
● Problem solving with OOP
● Encapsulation
● What's next?

– Removing redundancy
– Example:

 Worker w1, w2, w3,
– Better solution for many variables of same type?

● Static data structures (arrays)
● Dynamic data structures (lists, trees,)

 4

Data Structure
● Reminder: Abstract data type

– Data and associated actions
– Essentially a type
– OOP: make a class

● Special kind of ADT:
– Data structure
– Organized collection of data with methods for building,

accessing, analyzing
– Examples:

● Arrays
● Lists: Friend of a friend...
● others?

1

 5

Static Data Structure
● Static data structure:

– Can create once for a particular size
– Good when you know the amount of data
– Typical implementation of this ADT: arrays

 6

Reference Values
● Arrays in Java – basic rules!

– arrays are objects
– indexing uses [] and starts at 0
– arrays get default values of "zeros"
– arrays have default field length

● The gist:
 int[] x;
 x = new int[3];
 System.out.println(x[2]);
 x[0] = 10 + 20;
 System.out.println(x.length);

● How to view? (see below)

 7

More Detailed Rules
● Arrays are objects
● Java has built-in array class that you can't see but...
● pretend that Java has the following class:

 public class Type[] {
 public final int length;
 public Type Type[0];
 public Type Type[1];
 .
 .
 .
 public Type Type[length-1];
 public Type[] [int size] {

 length = size;
 }
 // built in Object methods (e.g.,toString)

 }
● Java really does think of an array as a special object

 8

Rules: Array Declaration
● All arrays in Java are 1-D

– Array variables have a special type for declaration:
 Type[] a; // 1-D array
 Type a[]; // 1-D array

– both are OK: usually 1st is better style
– Type is any valid type!
– scope of reference variable?

● is it a local variable?
● is it a field?
● is it a method parameter?

– all elements must have same type!
(inheritance will modify this rule a bit)

● How to do multidimensional?

2

 9

Rules: Multidim. Declaration
● Multidim?

– Think: Type[], where Type is also Type[]
– Kind of like (Type[])[]

● Java shortens the notation:
 Type[][] a; // 2-D array
 ____________ ; // multidim? Pattern?

– really an array of arrays
● How to create?

 10

Create 1-D Array
● Create array

– Must create 1 dimension at a time!
 a = new Type[size];

– size is a valid integer expression
– size represents the length!
– looks like a constructor?
– array filled with default "zeros"

● primitive example:
 int[] x = new int[3]; // picture?

● class example:
 Person[] p = new Person[2]; // picture?

 11

Accesing/Inserting Elements
● Syntax:

– access: Type[index]
– insert: Type[index] = expression;

● Notes:
– index must be an expression of type int
– inserted expression must have same type as array

 12

Some Examples
● Examples:

 int[] x = new int[2];
 x[0] = 10;
 x[1] = 20;
 // x[2] = 30; // ?

 Person[] p = new Person[2];
 p[0] = new Person("Arcturus");
 System.out.print(p[0].getName());
 // note precedence of [] and .

3

 13

Application: Arrays in a class
class Data {

private int[] x;
public Data(int size) {

x = new int[size];
}
// other methods

}

public class Test {
public static void main(String[] args) {

Data d = new Data(4);
// access d.something(...)

}
}

 14

Create 2-D Array
● Multidim: can avoid doing 1-D arrays one at a time:

 Type[][] a = new Type[dim1][dim2];
● Primitive type example:

 int[][] x = new int[3][2];
 for (int i=0;i<x.length;i++)

 for (int j=0;j<x[0].length;j++)
 x[i][j]=MyMath.randInt(0,1);

● Visualization:

 15

More 2-D Arrays
● class example:

– remember that arrays always fill with defaults!
– so, you need to create objects and put them in array!

 Person[][] p = new Person[3][2];
 System.out.println(p[3][2]);
 // System.out.println((p[3]).getName());
 for (int i=0;i<p.length;i++)

 for (int j=0;j<p[0].length;j++)
 p[i][j] = new Person();

● Explanation:

 16

Initializer Lists
● Initializer list:

 Type[] var = {e1, e2, ..., en} ;
– must declare and create on same line!
– Example:

 int[] x = {2, 1, -2, 1};
● More formal—anonymous array:

– handy for returning an array
– examples

 int[][] x = new int[][] {1,3,2};

 return new int[][] {0,1,2};

4

 17

Ragged Arrays
● consequence of 1-D array:

– not all dimensions must be the same
– can leave a dimension unspecified

● Must remember order of indicies:
– outermost/leftmost
– inner/right
– innermost/rightmost

● Visualization:

 18

Example
public class Ragged {
 public static void main(String[] args) {
 int[] a = {1,2,3};
 int[] b = {4,5,6,7,8};
 int[][] x = new int[2][];
 x[0] = a;
 x[1] = b;
 print(x);
 }

 public static void print(int[][] x) {
 for (int i=0;i<x.length;i++) {
 for (int j=0;j<x[i].length;j++)
 System.out.print(x[i][j] + " ");
 System.out.println();
 }
 }

}

 19

Dynamic Data Structures
● Arrays:

– The good:
● Convenient, clear
● Quick storage retrieval

– The bad:
● Once created, cannot grow any further

– The ugly
● To change size, need to create another array (space expense

in creating array, time expense in copying)
● Could force programmer to specify really big, wasteful array

at the beginning and force user to stay within size
● When do you need a structure to change?

 20

Fundamental ADTs
● ADT reminder:

– data
– operations

● For data structure:
– ADT organizes data
– Operations to put, get, find, sort, ...

● Fundamental ADTs
– Strings
– Arrays
– Lists
– Trees

5

 21

Sequence Structures
● Basic Operations:

– put
– get

● Stack
● Queue
● Priority queue

 22

Search Structures
● Basic operations:

– insert
– delete
– search

● Sorted arrays, sorted lists
● Binary search trees

 23

Vector
● Easy, useful dynamic data structure
● Vector is not a linear algebra vector

– provides access with ops as an array
– can grow/shrink dynamically

● Already provided by Java, but need to learn a bit more
before you can use it....

 24

More Java To Learn: API
● Must use API:

– see link on course website
– Vector is part of java.util
– except for classes in java.lang and your
CLASSPATH, you must import classes!

 import classname;
 import path.classname;
 import path.* ; // everything in package

6

 25

More Java: Object
● Many Vector headers require objects of type Object

– inheritance: class types can be related
– allows mixing of types as long they're related
– think promotion and casting
– consequence: variables of class Object can be aliases to

any object of any type!
● Examples:

 Object x = new Person();
 Worker w = new Worker();
 x = w;
 Integer i = new Integer(4); // java.lang
 Object o = i;
 System.out.println(i);

 26

Vector Example
import java.util.Vector;

public class TestVector {
 public static void main(String[] args) {

 Vector v = new Vector(0);
 v.add(new Integer(2));
 v.add(new Integer(-1));
 System.out.println(v);
 System.out.println(v.get(0));

 }
}

 27

Lists
● Designing your own "vector"
● Need to use notion of references:

– Person has a friend
– that friend has a friend
– eventually run out friends, so last friend is null

● Visualization:

 28

List ADT Design
● data

– node
eg, Person has a name, ID, age, ...

– reference to another object of related type
eg, friend, next, prev, parent, child, ...

● operations
– create
– put
– get
– size
– others? for ideas, look in API! (java.util.List)

7

 29

Example List Class
class PersonL {
 private String name;
 private PersonL next;

 public PersonL(String name, PersonL next) {
 this.name = name;
 this.next = next;
 }

 public String getName() { return name; }
 public PersonL getNext() { return next; }
 public void setName(String name) { this.name = name; }
 public void setNext(PersonL next) { this.next = next; }
 public String toString() { return name+"->"+next; }
}

 30

Example Continued
public class Friendster {
 public static void main(String[] args) {

 PersonL c = new PersonL("C",null);
 PersonL b = new PersonL("B",c);
 PersonL a = new PersonL("A",b);

 System.out.println(a);
 System.out.println(size(a));

 }

 31

Example Still Continued
 public static int size(PersonL p) {

 int size = 0;
 while (p != null) {
 size++;
 p = p.getNext();
 }
 return size;
 }

}

8

