
CS100M/CIS121/EAS121 Spring 2004
Assignment 3: “Title TBA”
Due Wednesday, March 10, 11:59:00 PM

0. Introduction

0.1 Goals

This assignment will help you develop skills in:

• Using conditional and repetition statements.
• Using and designing functions.
• Storing values in arrays.
• Using the symbolic toolbox.
• Creating a larger, more complex program composed of subprograms.
• Solving for roots of equations.

0.2 Instructions

Be sure to read the entire assignment before answering the questions! Do the tasks in the 
following sections. You may work with one partner or by yourself for this assignment. 

0.3 Submission

Follow the Submission Format Requirements at the CMS Info link on the course website. 
The last section describes what to submit on CMS.

0.4 Grading

All code that you submit must run without warnings and errors. Otherwise, you will receive 
a zero. This assignment’s weight counts as 1.5 times that of a typical assignment.

0.5 Academic Integrity

You must abide by the Code of Academic Integrity, which is provided for CS100M, the 
Department of Computer Science, and Cornell University on our course website. Refer to 
the link called Academic Integrity.

1. Motivation
Landscaping and construction often require structures to shore up and block portions of the 
ground from collapsing. Such structures are called sheet piles. They protect workers from 
being crushed on construction sites. Figure 1 illustrates the cross-section of a sheet pile 
driven into sandy soil. You should also look around campus at the various construction 
projects! Various parameters effect the construction of sheet piles, such as loading and soil 
properties. Key parameters are listed below:

• : force due to ground weight that pushes the pile to left and causes different pressure 
distributions to the left and right of the pile.

• : unit weight of soil (force/volume).
• : soil friction angle.
• : height of sheet pile above ground surface (distance, measure as positive value)
• : depth of sheet pile below ground surface (distance, measured as positive value)
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There are also two key terms that relate to soil friction:

(1)

and

. (2)

Equation 3 (below) shows the relationship of these parameters and terms:

. (3)

Given all other parameters from measurements at a job site, a designer can solve for to 
produce the depth to which the sheet pile should be driven into the ground.

Figure 1:  Sheet Pile
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2. Mathematical Background
2.1 Terminology

A geotechnical engineer would need to solve Equation 3 for the value of  to determine 
pile depth as part of a larger design process. In general, the variable  acts as the 
independent variable because the value may change. As with any equation, substituting the 
correct value of the unknown independent variable (D in this case) causes the left-hand side 
to become zero. Such a value satisfies an equation and is called a root. For example, you 
learned in high-school (maybe earlier?) about the general solution to . As 
in the quadratic equation, some equations generate multiple roots that all satisfy the 
equation. So, the engineer must understand the underlying physical model to make sense of 
the numerical answers. But, what if the equation is more complicated, as in Equation 3? 
Section 3 reviews a variety of approaches that assist the task of finding roots.

2.2 Equality and Round-off Error

Before solving for roots, consider the following issue, faced in all numerical computations. 
When using floating-point numbers, computers rarely compute an exact value of an 
expression. Try computing 1.0/3.0, for example. Usually, an arithmetic operation 
introduces a small amount of round-off error at a “distant” decimal place. Though 
minuscule, this error typically causes failure of an equality comparison. When comparing 
two floating-point numbers, use a tolerance, a small numerical value below which you 
“don’t mind” a difference. Many texts denote tolerance as  and use the following equation 
to compare two quantities  and  for approximate equality:

. (4)

For instance, the numbers 1.0001 and 1.0002 are essentially “equal” within a tolerance of 
0.0001. Refer to Chapman, pp. 89–90, for further details.

2.3 Angles

Many computer languages require angles in terms of radians. The formula for converting 
between degrees and radians is as follows:

. (5)

Consult help deg2rad for a built-in MATLAB function that performs the conversion.

3. Solution Techniques
Refer to Section 1 and Equation 1. We need to try various algorithms to solve for the sheet-
pile depth  given a pre-determined amount of round-off error. This section provides an 
overview of some root-solving techniques that will help you.

3.1 Guessing

Yes, you could feasibly just keep guessing random values for the independent variable. 
Sooner or later (most likely later) you will find a root because the equation will produce a 
value within your tolerance. Obviously, this approach is wildly inefficient…you need an 
algorithm that applies a bit more control.
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3.2 Experimental

Rather than near-random guessing, you could visually inspect the equation. How? Set the 
equation to a dependent variable, as in

. (6)

The “body” of the equation is , where  is the independent variable. Values of  that 
generate values of  (within a tolerance) are the roots. So, you would pick a large 
interval (domain) of values of  and plot the corresponding values of  (range). Simply 
looking at the plot will tell you the approximate location of the root.

3.3 Exact

Sometimes you might be able to find an analytical solution to the equation, depending on 
the complexity of the equation. An analytical solution is an exact symbolic solution to a 
mathematical problem. In the case of a 4th-order polynomial, a rather lengthy formula exists 
for an exact solution.

3.4 Numerical Analysis

When you inspect the complexity of the exact formula, you will discover why a numerical 
approach is more practical than an analytical solution. Although the numerical answer will 
only approximate the analytical, or true, solution, all you need is a value within an 
acceptable tolerance. In fact, soil properties are relatively uncertain, so a very precise 
answer will not improve the solution. Another advantage of a numerical solutions is that you 
can run a program many times for different parameter values, i.e., conduct a parametric 
study.

3.4.1 LHS/RHS Method

This section describes a brute-force numerical technique. Rather than relying on random 
guessing, the left-hand side/right-hand side (LHS/RHS) technique, as denoted by DIS, 
introduces more control and less randomness in the search for the root. LHS/RHS searches 
for a solution within an assumed interval, according to this algorithm:

• Pick a starting point (initial value of ) and direction to iterate.
• Substitute  into the equation and check if the resulting value meets the tolerance.
• If not, increment  until:

– the tolerance is satisfied
– the equation changes sign
– an excessive amount of iterations has occurred

• If the equation changes sign before meeting the tolerance, the direction must reverse, 
using a smaller increment. Why? The increment was too large, forcing the analysis to 
miss the root.

By “bouncing” back and forth with smaller and smaller increments, the root will eventually 
be reached, assuming a smooth and continuous curve. On the other hand, if the user initially 
picked the wrong direction, the algorithm might continue forever because the root is in the 
other direction. So, the algorithm must decide what counts as excessive iterations and start 
over again. Of course, this technique leaves much to be desired. The next section presents a 
more refined technique.
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3.4.2 Bisection Method

A still-somewhat-brute-force-but-not-as-brutal technique involves a bit more strategy. What 
happens to a function  when the independent variable  becomes a root? The function 
either touches or crosses the independent variable’s axis. For a simple case, consider the line 

. Using  and , try the following:

• Pick a value . To the right of ,  is positive.
• Pick a value . To the left of ,  is negative.

Thus, tracking where a function changes sign helps locate a root, as shown in the LHS/RHS 
method. But, a more refined technique called the bisection method searches for a root by 
investigating sign changes within intervals. Refer to Figure 2 and the following algorithm:

• Pick a starting point, , and an end point,  such that the interval between  and 

 contains the root. Yes, you do have to guess a proper interval.

• Compute the midpoint .

• Using , compute the equation .

• Check the tolerance of .

• Until  meets the tolerance:

– Compute , , , , , and .

– If , then  is to the left of the root:  becomes the new .

– If , then  is to the right of the root:  becomes the new .

What if the user picks an interval that does not contain a root? The algorithm might keep 
iterating forever unless the user supplies a stopping condition to prevent excessive iteration. 
Also, where does that initial interval come from? The next method bypasses this issue.

Figure 2:  Bisection Method
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3.4.3 Newton’s Method

A more efficient method adapts the notion of a Taylor series. Given a point  “close” to a 
root of , you can expand  as follows:

. (7)

Setting Equation 7 to zero implies that  is a root of . Leaving out all higher order 
derivatives gives an approximate equation:

. (8)

Rearranging the terms in Equation 8 yields

. (9)

Refer to Figure 3. You can use Equation 9 to implement this efficient algorithm

• Pick an initial value .

• Calculate .

• While tolerance is not met, iterate as follows:
– Compute the value of .

– Compute the new value of  (denoted ) using 

– Compute the new value . 

Figure 3:  Newton’s Method
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The approach may “meet tolerance” by either checking the function or the relative change 
. Why check ? As the independent variable approaches the root, each new 

increment shrinks. But, when the function is “steep,” checking tolerance with function 
values  is better. As a safe guard, the algorithm should also check for 
excessive iteration.

4. Problem/Tasks
Your job is to write code that implements numerical techniques that find the necessary depth 
to drive a sheet pile given a set of parameters. We have also included other tasks and 
suggestions that relate to the development of your solutions.

4.1 Run Our Code!

To assist with your development, we have provided a P-Code version of the entire solution 
for you to test. Before working on your own code, run the program and try different inputs, 
both legal and illegal, to learn how your program is required to work. All you need to do is 
make sure you set the path/current directory, unzip the p-code solution, and enter a3 at the 
command prompt in MATLAB.

4.2 Data

We are including various functions that perform user input and obtaining parameter values. 
The function getParams will return the data we are assuming for this assignment: 

 kN/ , ,  m,  kN/m, error tolerance of , and 
maximum iterations = 1000. Because getParams will return multiple values, you would 
include the following statement in your solutions for each approach:

[GAMMA PHI LENGTH FORCE EPS MAXITERS] = getParams ;

Note that getParams takes no input arguments and that some tasks that you develop 
(below) do not use all of the values.

4.3 Guessing Method 

Write a script called guessmethod that guesses just one pile depth and reports whether 
or not the guess is correct. This script will call a function called evalPileDepthEqn that 
we have provided.

4.4 Experimental Method

Create a script called manualmethod that performs the experimental approach. This 
script will produce a plot of the equation for a range of pile depths with these steps:

• Obtain parameters from getParams.
• Prompt the user for the lowest and highest value of  to use.
• Plot the pile depth equation for 100 increments in the specified interval for .
• Prompt the user to try a new set of parameters.

Note that this script does not find or indicate a solution!

4.5 Exact Method (Optional) 

For 10 bonus points, use MATLAB to solve the 4th order polynomial analytically and 
produce the correct root. If you choose to attempt this portion, call your script/function 
exactmethod.
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4.6 LHS/RHS Method

Create a script M-File called lhsrhsmethod that solves for the depth, using the algorithm 
in Section 3.4.1. Your script will do the following:

• Obtain parameters from getParams.
• Sets an initial increment of 0.01.
• Prompts the user for a legal initial value (non-negative real number) and legal direction 

(pos or neg). You must ask for each input separately, as shown in our solution. Keep 
prompting the user if they enter illegal values.

• Use the LHS/RHS method to find a value of depth that satisfies Equation 3. Remember 
to use EPS to test the tolerance.

• Ensure that the program produces the correct result by using MAXITERS to determine 
if the user made poor choices of initial direction and the starting point.

• If original direction is neg and D becomes less or equal than 0, change the direction to 
pos.

• Reverse direction and divide your increment by 10 if the pile depth equation changes 
sign.

• Output the solution, value of the equation for the solution, and number of iterations to 
find the solution.

4.7 Bisection Method

Create a script M-File called bisectionmethod that solves for the depth. Follow the 
algorithm in Section 3.4.2. Your script will do the following:

• Obtain parameters from getParams.
• Prompts the user for an initial interval. The user will be prompted for legal values of 

each end point of the interval. If the interval is illegal (contains negative value or end 
points reversed), the program will re-prompt the user.

• Use the Bisection method to find a value of depth that satisfies Equation 3. Remember 
to use EPS to test the tolerance.

• Ensure that the program produces the correct result by picking a new interval if 
MAXITERS is exceeded.

• Output the solution, value of the equation for the solution, and number of iterations to 
find the solution.

4.8 Newton’s Method

Create a script M-File called newtonsmethod that solves for the depth. Follow the 
algorithm in Section 3.4.3. Your script will do the following:

• Obtain parameters from getParams.
• Use Newton’s method to find a value of depth that satisfies Equation 3. Remember to 

use EPS to test the tolerance.
• Ensure that the program produces the correct result by picking a new starting point if 
MAXITERS is exceeded or a negative root is found.

• Output the solution, value of the equation for the solution, and number of iterations to 
find the solution.

4.9 “Main Program”

Ensure that your scripts may be called by the supplied scripts a3, which has been provided 
for you. It automates the calling of all the scripts in one convenient package! You do not 
need to write anything for this task.
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4.10 Feature List

If you find that you need additional functions to clarify your code and/or reduce redundancy, 
feel free to write them as needed. Include a README.txt file that explains what you have 
included. If you do not feel you have included more than what this document specifies, be 
sure to that fact as well.

Sometimes students wish add additional features that exceed the specifications of the 
assignment, as in using GUIs. We allow such enhancements as long as they do not interfere 
with the specifications and expectations of the assignment. In such cases, we have 
occasionally awarded bonus points for exceptional work. Note that bonus points to not raise 
the core-point total of the assignment.

4.11 Discussion

In a file called discussion.txt, answer the following questions:

1. How closely do the results match from each of the approaches?
2. Which technique is most efficient? Why?
3. How do the LHS/RHS and bisection methods compare to algorithms discussed for 

number guessing, which has been discussed in lecture? Compare and contrast these 
problems and their algorithms.

4.12 Advice

We suggest that you follow this advice:

• Develop all algorithms on paper first!
• Try to figure out various test cases before programming. Test along the way.
• Supply dummy input parameters to each technique so that you can trace its code.
• Plan out how each module is called. Refer to a3.
• Create empty versions of each script and function that include only comments and 

perhaps simple dummy return/output values.
• Write and test each module (individual script with specific purpose) individually. 

Confirm that the module fits into the overall program before working on the next 
module.

5. Submitting Your Work
Submit a zip file called a3.zip that contains these files:

• guessmethod.m
• manualmethod.m
• exactmethod.m (if you chose to do it)
• lhsrhsmethod.m
• bisectionmethod.m
• newtonsmethod.m
• README.txt
• discussion.txt
• all other functions/scripts that you have developed.

Do not submit files that we have provided! We will supply our own versions! If you 
modify our supplied files, chances are that your solution will not work.
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