
CS100M/CIS121/EAS121 Spring 2004
Assignment 3: “Title TBA”
Due Wednesday, March 10, 11:59:00 PM

0. Introduction

0.1 Goals

This assignment will help you develop skills in:

• Using conditional and repetition statements.
• Using and designing functions.
• Storing values in arrays.
• Using the symbolic toolbox.
• Creating a larger, more complex program composed of subprograms.
• Solving for roots of equations.

0.2 Instructions

Be sure to read the entire assignment before answering the questions! Do the tasks in the
following sections. You may work with one partner or by yourself for this assignment.

0.3 Submission

Follow the Submission Format Requirements at the CMS Info link on the course website.
The last section describes what to submit on CMS.

0.4 Grading

All code that you submit must run without warnings and errors. Otherwise, you will receive
a zero. This assignment’s weight counts as 1.5 times that of a typical assignment.

0.5 Academic Integrity

You must abide by the Code of Academic Integrity, which is provided for CS100M, the
Department of Computer Science, and Cornell University on our course website. Refer to
the link called Academic Integrity.

1. Motivation
Landscaping and construction often require structures to shore up and block portions of the
ground from collapsing. Such structures are called sheet piles. They protect workers from
being crushed on construction sites. Figure 1 illustrates the cross-section of a sheet pile
driven into sandy soil. You should also look around campus at the various construction
projects! Various parameters effect the construction of sheet piles, such as loading and soil
properties. Key parameters are listed below:

• : force due to ground weight that pushes the pile to left and causes different pressure
distributions to the left and right of the pile.

• : unit weight of soil (force/volume).
• : soil friction angle.
• : height of sheet pile above ground surface (distance, measure as positive value)
• : depth of sheet pile below ground surface (distance, measured as positive value)

P

γ
φ
L
D

1/9

http://courses.cs.cornell.edu/cs100m/2004sp/cms.html
http://www.cs.cornell.edu/courses/cs100m/2004sp/cms.html
http://courses.cs.cornell.edu/cs100m/2004sp/syllabus.html#Assignments
http://www.cs.cornell.edu/courses/cs100m/2004sp/cms.html
http://www.cs.cornell.edu/courses/cs100m/2004sp/ai.html

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 2/9
There are also two key terms that relate to soil friction:

(1)

and

. (2)

Equation 3 (below) shows the relationship of these parameters and terms:

. (3)

Given all other parameters from measurements at a job site, a designer can solve for to
produce the depth to which the sheet pile should be driven into the ground.

Figure 1: Sheet Pile

Ka 45° φ
2
---–

 tan2=

K p 45° φ
2
---+

 tan2=

D
4 8P

γ K p Ka–()
-----------------------------D

2
–

12PL
γ K p Ka–()
-----------------------------D–

2P
γ K p Ka–()

 2
– 0=

D

L

D

Sand

Sand

Sheet Pile

P

Sheet

Isometric View

Cross-Section

Pile

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 3/9
2. Mathematical Background
2.1 Terminology

A geotechnical engineer would need to solve Equation 3 for the value of to determine
pile depth as part of a larger design process. In general, the variable acts as the
independent variable because the value may change. As with any equation, substituting the
correct value of the unknown independent variable (D in this case) causes the left-hand side
to become zero. Such a value satisfies an equation and is called a root. For example, you
learned in high-school (maybe earlier?) about the general solution to . As
in the quadratic equation, some equations generate multiple roots that all satisfy the
equation. So, the engineer must understand the underlying physical model to make sense of
the numerical answers. But, what if the equation is more complicated, as in Equation 3?
Section 3 reviews a variety of approaches that assist the task of finding roots.

2.2 Equality and Round-off Error

Before solving for roots, consider the following issue, faced in all numerical computations.
When using floating-point numbers, computers rarely compute an exact value of an
expression. Try computing 1.0/3.0, for example. Usually, an arithmetic operation
introduces a small amount of round-off error at a “distant” decimal place. Though
minuscule, this error typically causes failure of an equality comparison. When comparing
two floating-point numbers, use a tolerance, a small numerical value below which you
“don’t mind” a difference. Many texts denote tolerance as and use the following equation
to compare two quantities and for approximate equality:

. (4)

For instance, the numbers 1.0001 and 1.0002 are essentially “equal” within a tolerance of
0.0001. Refer to Chapman, pp. 89–90, for further details.

2.3 Angles

Many computer languages require angles in terms of radians. The formula for converting
between degrees and radians is as follows:

. (5)

Consult help deg2rad for a built-in MATLAB function that performs the conversion.

3. Solution Techniques
Refer to Section 1 and Equation 1. We need to try various algorithms to solve for the sheet-
pile depth given a pre-determined amount of round-off error. This section provides an
overview of some root-solving techniques that will help you.

3.1 Guessing

Yes, you could feasibly just keep guessing random values for the independent variable.
Sooner or later (most likely later) you will find a root because the equation will produce a
value within your tolerance. Obviously, this approach is wildly inefficient…you need an
algorithm that applies a bit more control.

D
D

ax2 bx c+ + 0=

ε
x y

x y– ε≤

degrees
360°

-------------------- radians
2π

--------------------=

D

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 4/9
3.2 Experimental

Rather than near-random guessing, you could visually inspect the equation. How? Set the
equation to a dependent variable, as in

. (6)

The “body” of the equation is , where is the independent variable. Values of that
generate values of (within a tolerance) are the roots. So, you would pick a large
interval (domain) of values of and plot the corresponding values of (range). Simply
looking at the plot will tell you the approximate location of the root.

3.3 Exact

Sometimes you might be able to find an analytical solution to the equation, depending on
the complexity of the equation. An analytical solution is an exact symbolic solution to a
mathematical problem. In the case of a 4th-order polynomial, a rather lengthy formula exists
for an exact solution.

3.4 Numerical Analysis

When you inspect the complexity of the exact formula, you will discover why a numerical
approach is more practical than an analytical solution. Although the numerical answer will
only approximate the analytical, or true, solution, all you need is a value within an
acceptable tolerance. In fact, soil properties are relatively uncertain, so a very precise
answer will not improve the solution. Another advantage of a numerical solutions is that you
can run a program many times for different parameter values, i.e., conduct a parametric
study.

3.4.1 LHS/RHS Method

This section describes a brute-force numerical technique. Rather than relying on random
guessing, the left-hand side/right-hand side (LHS/RHS) technique, as denoted by DIS,
introduces more control and less randomness in the search for the root. LHS/RHS searches
for a solution within an assumed interval, according to this algorithm:

• Pick a starting point (initial value of) and direction to iterate.
• Substitute into the equation and check if the resulting value meets the tolerance.
• If not, increment until:

– the tolerance is satisfied
– the equation changes sign
– an excessive amount of iterations has occurred

• If the equation changes sign before meeting the tolerance, the direction must reverse,
using a smaller increment. Why? The increment was too large, forcing the analysis to
miss the root.

By “bouncing” back and forth with smaller and smaller increments, the root will eventually
be reached, assuming a smooth and continuous curve. On the other hand, if the user initially
picked the wrong direction, the algorithm might continue forever because the root is in the
other direction. So, the algorithm must decide what counts as excessive iterations and start
over again. Of course, this technique leaves much to be desired. The next section presents a
more refined technique.

y f x()=

f x() x x
y 0=

x y

D
D

D

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 5/9
3.4.2 Bisection Method

A still-somewhat-brute-force-but-not-as-brutal technique involves a bit more strategy. What
happens to a function when the independent variable becomes a root? The function
either touches or crosses the independent variable’s axis. For a simple case, consider the line

. Using and , try the following:

• Pick a value . To the right of , is positive.
• Pick a value . To the left of , is negative.

Thus, tracking where a function changes sign helps locate a root, as shown in the LHS/RHS
method. But, a more refined technique called the bisection method searches for a root by
investigating sign changes within intervals. Refer to Figure 2 and the following algorithm:

• Pick a starting point, , and an end point, such that the interval between and

 contains the root. Yes, you do have to guess a proper interval.

• Compute the midpoint .

• Using , compute the equation .

• Check the tolerance of .

• Until meets the tolerance:

– Compute , , , , , and .

– If , then is to the left of the root: becomes the new .

– If , then is to the right of the root: becomes the new .

What if the user picks an interval that does not contain a root? The algorithm might keep
iterating forever unless the user supplies a stopping condition to prevent excessive iteration.
Also, where does that initial interval come from? The next method bypasses this issue.

Figure 2: Bisection Method

f x() x

y x 1+= x 1–= y 0=

x 1–> x 1–= y
x 1–< x 1–= y

xL xR xL

xR

xM

xL xR+

2
------------------=

xM f xM()

f xM()

f xM()

xL xR xM f xL() f xR() f xM()

f xM() f xR() 0< xM xM xL

f xM() f xL() 0< xM xM xR

x
xm xRxL

f xL()

f xR()

f x()

f xm()

root

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 6/9
3.4.3 Newton’s Method

A more efficient method adapts the notion of a Taylor series. Given a point “close” to a
root of , you can expand as follows:

. (7)

Setting Equation 7 to zero implies that is a root of . Leaving out all higher order
derivatives gives an approximate equation:

. (8)

Rearranging the terms in Equation 8 yields

. (9)

Refer to Figure 3. You can use Equation 9 to implement this efficient algorithm

• Pick an initial value .

• Calculate .

• While tolerance is not met, iterate as follows:
– Compute the value of .

– Compute the new value of (denoted) using

– Compute the new value .

Figure 3: Newton’s Method

x0
f x() f x()

f x() f x0() x x0–() f ′ x0()
x x0–()2

2!
---------------------- f ″ x0() …+ + +=

x f x()

0 f x0() x x0–() f ′ x0()+≈

δ x x0–
f x0()

f ′ x0()
--------------–= =

x1

f x1()

f ′ x()

x x2 x2 x1

f x1()

f ′ x1()
--------------–←

f x2()

x

y f x()=

Root

y

xr

Tangent

x2 x1

f x1()

f x2()

1st Guess

x3

f x3()

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 7/9
The approach may “meet tolerance” by either checking the function or the relative change
. Why check ? As the independent variable approaches the root, each new

increment shrinks. But, when the function is “steep,” checking tolerance with function
values is better. As a safe guard, the algorithm should also check for
excessive iteration.

4. Problem/Tasks
Your job is to write code that implements numerical techniques that find the necessary depth
to drive a sheet pile given a set of parameters. We have also included other tasks and
suggestions that relate to the development of your solutions.

4.1 Run Our Code!

To assist with your development, we have provided a P-Code version of the entire solution
for you to test. Before working on your own code, run the program and try different inputs,
both legal and illegal, to learn how your program is required to work. All you need to do is
make sure you set the path/current directory, unzip the p-code solution, and enter a3 at the
command prompt in MATLAB.

4.2 Data

We are including various functions that perform user input and obtaining parameter values.
The function getParams will return the data we are assuming for this assignment:

 kN/ , , m, kN/m, error tolerance of , and
maximum iterations = 1000. Because getParams will return multiple values, you would
include the following statement in your solutions for each approach:

[GAMMA PHI LENGTH FORCE EPS MAXITERS] = getParams ;

Note that getParams takes no input arguments and that some tasks that you develop
(below) do not use all of the values.

4.3 Guessing Method

Write a script called guessmethod that guesses just one pile depth and reports whether
or not the guess is correct. This script will call a function called evalPileDepthEqn that
we have provided.

4.4 Experimental Method

Create a script called manualmethod that performs the experimental approach. This
script will produce a plot of the equation for a range of pile depths with these steps:

• Obtain parameters from getParams.
• Prompt the user for the lowest and highest value of to use.
• Plot the pile depth equation for 100 increments in the specified interval for .
• Prompt the user to try a new set of parameters.

Note that this script does not find or indicate a solution!

4.5 Exact Method (Optional)

For 10 bonus points, use MATLAB to solve the 4th order polynomial analytically and
produce the correct root. If you choose to attempt this portion, call your script/function
exactmethod.

x2 x1– x2 x1–

f x2() f x1()–

γ 18= m
3 φ 30°= L 3= P 30= ε 0.01=

D
D

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 8/9
4.6 LHS/RHS Method

Create a script M-File called lhsrhsmethod that solves for the depth, using the algorithm
in Section 3.4.1. Your script will do the following:

• Obtain parameters from getParams.
• Sets an initial increment of 0.01.
• Prompts the user for a legal initial value (non-negative real number) and legal direction

(pos or neg). You must ask for each input separately, as shown in our solution. Keep
prompting the user if they enter illegal values.

• Use the LHS/RHS method to find a value of depth that satisfies Equation 3. Remember
to use EPS to test the tolerance.

• Ensure that the program produces the correct result by using MAXITERS to determine
if the user made poor choices of initial direction and the starting point.

• If original direction is neg and D becomes less or equal than 0, change the direction to
pos.

• Reverse direction and divide your increment by 10 if the pile depth equation changes
sign.

• Output the solution, value of the equation for the solution, and number of iterations to
find the solution.

4.7 Bisection Method

Create a script M-File called bisectionmethod that solves for the depth. Follow the
algorithm in Section 3.4.2. Your script will do the following:

• Obtain parameters from getParams.
• Prompts the user for an initial interval. The user will be prompted for legal values of

each end point of the interval. If the interval is illegal (contains negative value or end
points reversed), the program will re-prompt the user.

• Use the Bisection method to find a value of depth that satisfies Equation 3. Remember
to use EPS to test the tolerance.

• Ensure that the program produces the correct result by picking a new interval if
MAXITERS is exceeded.

• Output the solution, value of the equation for the solution, and number of iterations to
find the solution.

4.8 Newton’s Method

Create a script M-File called newtonsmethod that solves for the depth. Follow the
algorithm in Section 3.4.3. Your script will do the following:

• Obtain parameters from getParams.
• Use Newton’s method to find a value of depth that satisfies Equation 3. Remember to

use EPS to test the tolerance.
• Ensure that the program produces the correct result by picking a new starting point if
MAXITERS is exceeded or a negative root is found.

• Output the solution, value of the equation for the solution, and number of iterations to
find the solution.

4.9 “Main Program”

Ensure that your scripts may be called by the supplied scripts a3, which has been provided
for you. It automates the calling of all the scripts in one convenient package! You do not
need to write anything for this task.

CS100M/CIS121/EAS121 Spring 2004 Assignment 3: “Title TBA” 9/9
4.10 Feature List

If you find that you need additional functions to clarify your code and/or reduce redundancy,
feel free to write them as needed. Include a README.txt file that explains what you have
included. If you do not feel you have included more than what this document specifies, be
sure to that fact as well.

Sometimes students wish add additional features that exceed the specifications of the
assignment, as in using GUIs. We allow such enhancements as long as they do not interfere
with the specifications and expectations of the assignment. In such cases, we have
occasionally awarded bonus points for exceptional work. Note that bonus points to not raise
the core-point total of the assignment.

4.11 Discussion

In a file called discussion.txt, answer the following questions:

1. How closely do the results match from each of the approaches?
2. Which technique is most efficient? Why?
3. How do the LHS/RHS and bisection methods compare to algorithms discussed for

number guessing, which has been discussed in lecture? Compare and contrast these
problems and their algorithms.

4.12 Advice

We suggest that you follow this advice:

• Develop all algorithms on paper first!
• Try to figure out various test cases before programming. Test along the way.
• Supply dummy input parameters to each technique so that you can trace its code.
• Plan out how each module is called. Refer to a3.
• Create empty versions of each script and function that include only comments and

perhaps simple dummy return/output values.
• Write and test each module (individual script with specific purpose) individually.

Confirm that the module fits into the overall program before working on the next
module.

5. Submitting Your Work
Submit a zip file called a3.zip that contains these files:

• guessmethod.m
• manualmethod.m
• exactmethod.m (if you chose to do it)
• lhsrhsmethod.m
• bisectionmethod.m
• newtonsmethod.m
• README.txt
• discussion.txt
• all other functions/scripts that you have developed.

Do not submit files that we have provided! We will supply our own versions! If you
modify our supplied files, chances are that your solution will not work.

	CS100M/CIS121/EAS121 Spring 2004
	Assignment 3: “Title TBA”

	0. Introduction
	0.1 Goals
	0.2 Instructions
	0.3 Submission
	0.4 Grading
	0.5 Academic Integrity

	1. Motivation
	2. Mathematical Background
	2.1 Terminology
	2.2 Equality and Round-off Error
	2.3 Angles

	3. Solution Techniques
	3.1 Guessing
	3.2 Experimental
	3.3 Exact
	3.4 Numerical Analysis
	3.4.1 LHS/RHS Method
	3.4.2 Bisection Method
	3.4.3 Newton’s Method

	4. Problem/Tasks
	4.1 Run Our Code!
	4.2 Data
	4.3 Guessing Method
	4.4 Experimental Method
	4.5 Exact Method (Optional)
	4.6 LHS/RHS Method
	4.7 Bisection Method
	4.8 Newton’s Method
	4.9 “Main Program”
	4.10 Feature List
	4.11 Discussion
	4.12 Advice

	5. Submitting Your Work

