CS 100M Lecture 25

December 4, 2001

Topics: Polymorphism review, 2-d arrays

Reading (JV): Sec 7.3, 6.4

Polymorphism example

public class Vehicle {

 protected int plateNum; //plate #

 private int numWheels; //# of wheels

 public void writeOut() { . . . }

} //class Vehicle

public class Plane extends Vehicle {

 protected double wingSpan;

 public void writeOut() { . . . }

 public void doSomething() { . . . }

} //class Plane

public class Transport {

 Vehicle[] v = new Vehicle[5];

 v[0] = new Vehicle();

 v[1] = new Plane();

 v[1].writeOut(); //?

 v[1].doSomething(); //?

}
Accessing methods and fields through polymorphic references

· For overridden methods, the type of the object determines which version of the method gets invoked

· For other methods and fields, the type of the reference determines what methods and fields can be accessed

Object class
· If a class is not explicitly defined to be the child of an existing class, it is assumed to be the child of the Object class. Therefore all classes are (ultimately) derived from the Object class.

· The class header class Room is the same as class Room extends Object
abstract class

· A placeholder in a class hierarchy that represents a generic concept

· Cannot be instantiated

· Modifier: abstract
public abstract class Geometry

· Can contain abstract methods

public abstract double Area();

· Subclasses of abstract classes will “fill out” these abstract methods
Two-dimensional (2-d) arrays

· A table of values (references)

· Declare and access using two index values

· In Java, a 2-d array is an array of arrays (array of objects)
· The orientation (row, column) is how we choose to visualize the table
· By convention, we use row-major 2-d arrays
Multi-dimensional arrays

· Can have as many dimensions as you want

· Each dimension has its own constant length
· Since each dimension is an array of array references, it can have its own value of length (a ragged array
Creating a 2-d array

· Declare a reference x for a 2-d integer array:
· Create a 2-by-3 integer array y:
· Create the following array:
2 4 6

8 1 3

Accessing a 2-d array

Given a reference x that points to a 2-d integer array. . .

· What is its height (# of rows)?

· What is x[0] ?

· What is the length of the first row?

· How to access last element in row 2?

· How to access last element in last row?
Example

Given a 2-d integer array x, calculate the sum of all entries in the array. Assume the array is rectangular.

What if the array is ragged instead of rectangular? Suppose all rows exist but the rows have different lengths.

What if not all rows exist and the existing rows have different lengths?

1

