CS 100M Lecture 24

November 29, 2001

Topics: Overriding methods, method invocation, polymorphism

Reading (JV): Sec 7.3-7.5

Overriding methods

· Subclass can override definition of inherited method in favor of its own

· New method in subclass must have same signature as superclass (but has different method body)

· Which method gets used?? The object that is used to invoke a method determines which version is used

· Method declared to be final cannot be overridden

Polymorphism

A polymorphic reference can refer to different objects (related through inheritance) at different times.

Vehicle mover; //a Vehicle reference

Plane flyer; //a Plane reference

mover = new Vehicle(...);

flyer = new Plane(...);

// A plane is a vehicle

 mover = new Plane(...);

 mover = flyer;

// A vehicle is not a plane

 flyer = new Vehicle(...); //invalid
Accessing overridden methods through polymorphic references

The type of the object determines which version of the method gets invoked. Class Vehicle has method writeOut which class Plane overrides:

Vehicle v1 = new Vehicle(...);

Vehicle v2 = new Plane(...);

v1.writeOut(); //the Vehicle’s version

v2.writeOut(); //the Plane’s version

Accessing methods and fields through polymorphic references

The type of the reference determines the methods and fields that can be accessed

	
	

	class V {

 int num1;

 void vmethod() { num1++;)

}

class W extends V {

 int num2;

 void wmethod() { num2++; }

}
	Client code:

V x = new W();

System.out.println(x.num1);

System.out.println(x.num2); //invalid

x.vmethod();

x.wmethod(); //invalid

// Use explicit cast:

 System.out.println(((W)x).num2);

 ((W)x).wmethod();

static methods and variables

· Same rules for inheritance (accessibility) with respect to visibility modifiers

· Method: implicitly final
· Variable: same memory space as super class
	class Room {

 private static int nextID = 1;

 //id of next room to be created

 protected int id;

 private int mess; //messiness index

 public Room(int mess) {

 this.mess = mess;

 id = nextID;

 nextID++;

 }

 public String toString() {

 return "Room " + id;

 }

 public void clean() {

 mess--;

 if (mess<0) mess=0;

 }

 public void report() {

 System.out.println(toString()+

 ", has messiness index "+mess);

 }

 public static void countRooms() {

 System.out.println((nextID-1)+

 " rooms in total");

 }

} //class Room

class Bathroom extends Room {

 private boolean hasShower;

 public Bathroom(int mess,

 boolean hasShower) {

 super(mess);

 this.hasShower = hasShower;

 }

 public String toString() {

 String line = super.toString();

 line += ", a bathroom";

 if (hasShower)

 line += " with shower";

 return line;

 }

 public void majorCleanUp() {

 clean(); clean(); clean(); clean();

 }

} //class Bathroom
	public class House {

 public static void main(

 String[]args) {

 Room r1 = new Room(5);

 Bathroom r2 = new

 Bathroom(10,true);

 // Method invocation

 // Access non-inherited fields

System.out.println(r1);

System.out.println(r2);

r1.report();

r2.report();

System.out.println();

r1.clean(); r1.report();

r2.clean(); r2.report();

r2.majorCleanUp();

 r2.report();

//r1.majorCleanUp();

System.out.println();

 // Polymorphism

Room r3 = new

 Bathroom(20,false);

System.out.println(r3);

r3.clean(); r3.report();

//r3.majorCleanUp();

((Bathroom)r3).majorCleanUp();

r3.report();

System.out.println();

 // Static methods and variables

Room.countRooms();

Bathroom.countRooms();

 }

} //class House

2

