CS 100M Lecture 19

November 8, 2001

Topics: constructor (from last lecture), Project 5

Reading (JV): Be sure to read Sec 5.1 and pay attention to the topic “Passing Objects as Parameters”

Adventure Game

· A cave consists of rooms connected through tunnels reached via doors.

· Rooms are numbered starting at 1; each room has at most three doors; doors are numbered starting at 1.

· The player moves from room-to-room.

· There is a monster that moves from room-to-room on its own.

· Player and monster start in random rooms.

· If the player and the monster are in the same room, the player is captured and the game ends.

· Input: (1) cave definition, (2) player commands to move

· Output: prompts and feedback

Client Server Model

· Structure program as a collection of classes.

· Some classes have general utility.

· Other classes are specific to the application at hand.

· Design of adventure game and implementation

· Class Room

· collection of rooms

· numbered starting at 1

· connected to one another by tunnels reached via doors

· no room has more than 3 doors

· Class Game

· client of class Room

· processes input to build cave

· processes moves and keeps track of player position and monster position

· creates output

· stops game when player and monster are in same room
Output Statement

· Output statement: System.out.println(expression)

· If the type of expression is String (i.e., text), then the value of expression is sent to output.
· Otherwise, the value of expression is “converted to a string”, which is then sent to output.
· Example:
System.out.println(“even”); //output: even

System.out.println(7); //output: 7

Output of Objects

· An object o is “converted to a string” by method o.toString()
· Every object has a default definition of toString()
System.out.println(rA); //output: something cryptic

· A class can redefine toString:
public String toString(){

 . . .

 return expression;

}
Statements in test harness to validate toString
Public static void main(String args[])

{

 . . .

 // Validate toString.

 System.out.print(“Here is room 1”);

 System.out.println(rA);

 System.out.print(“Here is room 4”);

 System.out.println(new Room());

 . . .

 }

}

Reference Equality

· Two references to objects are equal if they refer to one and the same object.

· E.g., suppose there is a class Foo defined, what would be the output of the following code segment?

Foo p1 = new Foo();

Foo p2 = new Foo();

if (p1 == p2)

 System.out.println(“same object”);

else

 System.out.println(“different objects”);

More examples of “tests” in test harness

public static void main(String args [])

{

 Room rA = new Room();

 Room rB = new Room();

 Room rC = new Room();

 // Validate connect and farRoom.

 Room.connect(rA, rB);

 if (rA.farRoom(1)!= rB) System.out.println(“Connect failure 1”);

 if (rB.farRoom(1)!= rA) System.out.println(“Connect failure 2”);

 if (rA.farRoom(2)!= null) System.out.println(“Connect failure 3”);

 if (rB.farRoom(2)!= null) System.out.println(“Connect failure 4”);

 Room.connect(rA, rC);

 if (rA.farRoom(1)!= rB) System.out.println(“Connect failure 5”);

 if (rA.farRoom(2)!= rC) System.out.println(“Connect failure 6”);

 if (rC.farRoom(2)!= rA) System.out.println(“Connect failure 7”);

 . . .

 }

}

Beginning of the application class

· read input on number of rooms and create all rooms

· read input on cave configuration and make all connections

· start the game!

2

