CS 100M Lecture 8 September 27, 2001

Topics: User-defined function

Reading (ML): Sec 5.2, 5.4, 5.5, 5.7 (exclude private function)
Optional Reading: Sec 5.3 (optional arguments)

User-Defined Function

e Can easily “reuse” code
e Functions can be independently tested

e Upon invocation, each function has its own memory space inaccessible by other functions or the command
window space—variables in a function can be “seen” only inside the function

e Values stored in variables are not preserved between function calls .

e Arguments are “passed by value”

Be sure you understand the example on p. 164 in Chapman.

Example: find prime numbers (again!)

Script file savePrime.m:

% Save prime numbers in [2,n] to vector prime

n = input (’Enter number: ’);
prime = 2; Y vector to store prime #s
i=3; % next number to be checked
while (i<=n)
% check number i, save if prime
prime = [prime isPrime(i)];
% go to next number
i = 1i+1;
end
prime

Function file isPrime.m:

function out = isPrime(n)
% Determine if n is prime, n>=2
% out <-- n if n is prime
% out <-- [] if n is composite

divisor = 2;
while (mod(n,divisor) “= 0)
divisor = divisor + 1;

end

if (divisor==n)
out = n;

else
out = [];

end

CS 100M Lecture 8 September 27, 2001

Global Memory

e Global memory can be accessed from any workspace

e Global variable must be declared to be global before it is used for the first time in a function.

global variable!l variable2 ...

Persistent Memory

Persistent memory can be accessed from within the function only and is preserved unchanged between calls to the
function.

persistent variablel variable2 ...

Aside: creating vectors through concatenation

% Add vectors a and b
n = length(a);
¢ = zeros(1,n);), unnecessary statement but improves efficiency

for i = 1:n
c(i) = a(i) + b(i);
end

