CS 100M Lecture 7 September 25, 2001

Topics: Program design, user-defined function

Reading (ML): Ch 5 intro, Sec 5.1, 5.2

Programming Rules of Thumb

e Learn program patterns of general utility and use relevant pattern for the problem at hand.

e Seek inspiration by systematically working test data by hand. Be introspective; ask yourself: “what am I
doing?”

e Declare variables for each piece of information you maintain when working problem by hand. Write comments
that precisely describe the contents of each variable.

e Decompose problem into manageable tasks.
o Remember the problem’s boundary conditions.

e Validate your program by tracing it on simple test data.

Program Trace

Trace the execution of the following program:
n=18; x=3; y=10;

while (n~=0)
if (mod(mn,2)==0)

n = n/2;
else
n = n-1;
x = 10*x+3;
y = y*10;
end
end
y = (y-1)/3;
n || 18
X 3
y 10
Time —

Example: Are they prime?
Write a program that saves in a vector all the prime numbers in the range of [2,n], (n;1).

Script file savePrime.m:

% Save prime numbers from 2 thru n to vector prime

n = input (’Enter number: ’);
prime = 2; 7 vector to store prime #s
i= 3; % next number to be checked
while (i<=n)
% call function to check number i, save to prime

% get next number
i=1i+1;
end
prime

CS 100M Lecture 7 September 25, 2001

Function file isPrime.m:

% Determine if n is prime, n>=2
% out <-- n if n is prime
% out <-- [] if n is composite

divisor = 2;

while (mod(n,divisor) “= 0)
divisor = divisor + 1;
end

if (divisor==n)

else

end

General Form of User-Defined Function
function [outargl, outarg2, ...] = fname(inargl, inarg2, ...)

% H1 comment line
% Other comment lines

executable code

User-Defined Function

e Can easily “reuse” code

Functions can be independently tested

Input and output arguments represent a “contract” between the developer and the user of the function

Arguments are “passed by value”

e Variables in a function can be “seen” only inside the function

Be sure you understand the example on p. 164 in Chapman.

