
1

1

Listening to events on GUIs

Sec. 17.4 contains this material. Corresponding lectures on

ProgramLive CD is a better way to learn the material.

Why men think “computer”
should be a feminine word
1. No one but their creator
understands their internal logic.
2. The native language they use to
talk with other computers is
incomprehensible to everyone else.
3. Even the smallest mistakes are
stored in long term memory for
possible later retrieval.
4. As soon as you make a commit-
ment to one, half your paycheck
goes for accessories for it.

Why women think “computer”
should be a male word
1. In order to do anything with
them, you have to turn them on.
2. They have a lot of data but still
can't think for themselves.
3. They are supposed to help you
solve problems, but half the time
they ARE the problem.
4. As soon as you commit to one,
you realize that if you had waited
a little longer, you could have
gotten a better model.

2

Listening to events: mouseclick, mouse movement into
or out of a window, a keystroke, etc.

• An event is a mouseclick, a mouse movement into or out of a
window, a keystroke, etc.

• To be able to “listen to” a kind of event, you have to

1. Write a method that will listen to the event.

2. Let Java know that the method is defined in the class.

3. Register an instance of the class that contains the
method as a listener for the event.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.

3

Listening to
a Button

1. Write the procedure to be called when a button is clicked.:

/** Process click of button */

public void actionPerformed(ActionEvent ae) {

 ...

}

3. Have the class implement interface ActionListener —write
the class heading as�
public class C extends JFrame implements
ActionListener {�

 ...�

}

5. Add an instance of this class as an “action listener” for the
button:

button.addActionListener(this);

We have not discussed
interfaces yet!

4

Listening to
a Button

/** An instance has two buttons. Exactly one is always enabled. */
public class ButtonDemo1 extends JFrame

 implements ActionListener {
 /** Class invariant: exactly one of eastB and westB is enabled */
 private JButton westB= new JButton("west");
 private JButton eastB= new JButton("east");
 /** Constructor: frame with title t & two buttons */
 public ButtonDemo1(String t) {
 super(t);
 Container cp= getContentPane();
 cp.add(westB, BorderLayout.WEST);
 cp.add(eastB, BorderLayout.EAST);
 westB.setEnabled(false);
 eastB.setEnabled(true);
 westB.addActionListener(this);
 eastB.addActionListener(this);
 pack();
 setVisible(true);
 }

/** Process a click of a button */

 public void actionPerformed

 (ActionEvent e) {

 boolean b= eastB.isEnabled();

 eastB.setEnabled(!b);

 westB.setEnabled(b);

 }

}
 red: listening

blue: placing

5

A JPanel that is painted

•  The content pane has a JPanel in its CENTER and�
a “reset” button in its SOUTH.

•  The JPanel has a horizontal box b, which contains�
two vertical Boxes.

•  Each vertical Box contains two instances of class Square.

•  Click a Square that has no pink circle, and a pink circle is drawn.�
Click a square that has a pink circle, and the pink circle disappears.�
Click the rest button and all pink circles disappear.

•  This GUI has to listen to:�
(1) a click on a Button�
(2) a click on a Square�

these are different kinds of events, and
they need different listener methods

6

Class
Square

/** An instance is a JPanel of size (WIDTH,HEIGHT). Green�
 or red depending on whether the sum of constructor parameters�
 is even or odd. .. */

public class Square extends JPanel {

 public static final int HEIGHT= 70; // height and

 public static final int WIDTH= 70; // width of square

 private int x, y; // Coordinates of square on board

 private boolean hasDisk= false; // = "square has pink disk"

 /** Constructor: a square at (x,y) */

 public Square(int x, int y) {

 this.x= x; this.y= y;

 setPreferredSize(new Dimension(WIDTH,HEIGHT));

 }

 /** Complement the "has pink disk" property */

 public void complementDisk() {

 hasDisk= ! hasDisk;

 repaint(); // Ask the system to repaint the square

 }
 continued on next page

2

7

Class
Square

 /** Remove pink disk

 (if present) */

 public void clearDisk() {

 hasDisk= false;

 // Ask system to

 // repaint square

 repaint();

 }

continuation of class Square

/* paint this square using g. System calls

 paint whenever square has to be redrawn.*/

 public void paint(Graphics g) {

 if ((x+y)%2 == 0) g.setColor(Color.green);

 else g.setColor(Color.red);

 g.fillRect(0, 0, WIDTH-1, HEIGHT-1);

 if (hasDisk) {

 g.setColor(Color.pink);

 g.fillOval(7, 7, WIDTH-14, HEIGHT-14);

 }

 g.setColor(Color.black);

 g.drawRect(0, 0, WIDTH-1,HEIGHT-1);

 g.drawString("("+x+", "+y+")", 10, 5+HEIGHT/2);

 }

}

8

A class that listens to a
mouseclick in a Square

import javax.swing.*;

import javax.swing.event.*;

import java.awt.*;

import java.awt.event.*;

/** Contains a method that responds to a

 mouse click in a Square */

public class MouseEvents

 extends MouseInputAdapter {

 // Complement "has pink disk" property

 public void mouseClicked(MouseEvent e) {

 Object ob= e.getSource();

 if (ob instanceof Square) {

 ((Square)ob).complementDisk();

 }

 }

}

This class has several methods
(that do nothing) that process

mouse events:

mouse click

mouse press

mouse release

mouse enters component

mouse leaves component

mouse dragged beginning in
component

Our class overrides only the method that processes mouse clicks

red: listening

blue: placing

9

Class MouseDemo2

public class MouseDemo2 extends JFrame

 implements ActionListener {

 Box b= new Box(BoxLayout.X_AXIS);

 Box leftC= new Box(BoxLayout.Y_AXIS);

 Square b00= new Square(0,0);

 Square b01= new Square(0,1);

 Box riteC= new Box(BoxLayout.Y_AXIS);

 Square b10= new Square(1,0);

 Square b11= new Square(1,1);

 JButton jb= new JButton("reset");

 MouseEvents me= new MouseEvents();

 /** Constructor: … */

 public MouseDemo2() {

 super(t);

 leftC.add(b00); leftC.add(b01);

 riteC.add(b10); riteC.add(b11);

 b.add(leftC); b.add(riteC);

 Container cp= getContentPane();

 cp.add(b, BorderLayout.CENTER);

 cp.add(jb, BorderLayout.SOUTH);

 jb.addActionListener(this);

 b00.addMouseListener(me);

 b01.addMouseListener(me);

 b10.addMouseListener(me);

 b11.addMouseListener(me);

 pack(); setVisible(true);

 setResizable(false);

 }

 public void actionPerformed(

 ActionEvent e) {

 b00.clearDisk(); b01.clearDisk();

 b10.clearDisk(); b11.clearDisk();

 }

}

red: listening

blue: placing

10

Listening to the keyboard

import java.awt.*; import java.awt.event.*; import javax.swing.*;

public class AllCaps extends KeyAdapter {

 JFrame capsFrame= new JFrame();

 JLabel capsLabel= new JLabel();

 public AllCaps() {

 capsLabel.setHorizontalAlignment(SwingConstants.CENTER);

 capsLabel.setText(":)");

 capsFrame.setSize(200,200);

 Container c= capsFrame.getContentPane();

 c.add(capsLabel);

 capsFrame.addKeyListener(this);

 capsFrame.show();

 }

 public void keyPressed (KeyEvent e) {

 char typedChar= e.getKeyChar();

 capsLabel.setText(("'" + typedChar + "'").toUpperCase());

 }

}

1. Extend this class.

2. Override this method.
It is called when a key
stroke is detected.

3. Add this instance as a
key listener for the frame

red: listening

blue: placing

