
1

1

CS100J 10 April 2005�
Rectangular arrays and ragged arrays. Secs. 9.1 – 9.3

A Billion. The next time you hear someone in government rather casually
use a number that includes the word "billion", think about it.

• A billion seconds ago was 1976.

• A billion minutes ago Jesus was alive.

• A billion hours ago our ancestors were living in the Stone Age.

• A billion days ago no creature walked the earth on two feet.

• A billion dollars lasts less than 8 hours at the rate our government spends
it.

 1,000,000,000

Do as many of the exercises on pp. 311-312 as you can to get
familiar with concepts and develop a skill. Practice in
DrJava! Test your methods, both by hand and on computer!

2

5 4 7 3
b

0 1 2 3 b.length
 one-dimensional array

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

rectangular array: 5 rows and 4 columns

number of rows

number of cols

Type of d is int[][] (“int array array”,

 “an array of int arrays”)

To declare variable d:

 int d[][].

To create a new array and assign it to d:

 d= new int[5][4];

To reference element at row r column c:

 d[r][c]

3

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4Number of rows: d.length

Number of columns in row r: d[r].length

Using an array initializer:

int[][] d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

“Length of one array in
array of arrays”

number of rows

number of cols

Type of d is int[][] (“int array array”,

 “an array of int arrays”)

To declare variable d:

 int d[][].

To create a new array and assign it to d:

 d= new int[5][4];

To reference element at row r column c:

 d[r][c]

4

/** = sum of first elements of rows of d. e.g. for array to

 right, it’s 5 + 4 + 5 + 4 + 6. */

public static int sum0(int[][] d) {

}

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

int x= 0;

return x;

// x = sum of first element of rows d[0..d.length–1]

// inv: x = sum of first element of rows d[0..r–1]

for (int r= 0; r != d.length; r= r+1) {

}

x= x + d[r][0];

5

// Process elements of b[][] in row-major order

// inv: rows 0..r-1 have been processed.�
// In row r, b[r, 0..c-1] have been processed

 for (int r= 0; r != b.length; r= r + 1)�

 for (int c= 0; c != b[r].length; c= c+1) }

 Process b[r][c]

}

Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

6

/** = a String rep of b[][] (as in an array initializer) */

public static String toString(int b[][]) {

/** = a String rep of b[][] (as in an array initializer) */

public static String toString(int b[][]) {

 String s= “{“

 // inv: Rows 0..r–1 have been appended to s */

 return s + “}”;

}

for (int r= 0; r != b.length; r= r + 1) {

 // Add row r to s

}

if (r != 0) s= s + ", "; s= s + “{“;

s= s + “}”;

// inv: the partial row b[r][0..c–1] has been added to s

for (int c= 0; c != b[r].length; c= c + 1) {

}

if (c != 0) s= s + “, “;

s= s + b[r][c];

2

7

How multi-dimensional arrays are stored: ragged arrays�

int b[][]= { {2, 3, 4}, {5, 1, 2} };

b a0
 a0

r0

2

3

4

0

1

2

r1

5

1

2

0

1

2

r0

r1

0

1

b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length.
Must all these arrays have the same length? No!

8

How multi-dimensional arrays are stored: ragged arrays�

b a0
 a0

r0

2

3

4

0

1

2

r1

5

6

0

1
r0

r1

0

1

int[][] b; Declare variable b of type int [][]

b= new int[2][] Create a one-dim. array of length 2 and store its

 name in b. Its elements are null, have type int[]

b[0]= new int[] {2, 3, 4}; Create int array, store its name in b[0].

b[1]= new int[] {5, 6}; Create int array, store its name in b[1].

9

Pascal’s Triangle�

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

The first and last entries on each row are 1.

Each other entry is the sum of the two entries above it

row r has r+1 values.

0

1

2

3

4

5

…

10

Pascal’s Triangle� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Entry p[i][j] is the number of ways j elements �
can be chosen from a set of size i !

p[i][j] = “i choose j” =

0

1

2

3

4

5

…

()
i�
j

recursive formula:�
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]

11

Pascal’s Triangle� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Binomial theorem: Row r gives the coefficients of (x + y) r

(x + y)2 = 1x2 + 2xy + 1y2

(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3

(x + y)r = ∑ (k choose r) xkyr-k�
 0 ≤ k ≤ r

0

1

2

3

4

5

12

Method to compute first r rows of Pascal’s Triangle in a ragged array�

/** Return ragged array of first n rows of Pascal’s triangle.

 Precondition: 0 ≤ n */

public static int[][] pascalTriangle(int n) {

 int[][] b= new int[n][]; // First n rows of Pascal's triangle

 // invariant: rows 0..i-1 have been created

 for (int i= 0; i != b.length; i= i+1) {

 // Create row i of Pascal's triangle

 b[i]= new int[i+1];

 // Calculate row i of Pascal's triangle

 b[i][0]= 1;

 // invariant b[i][0..j-1] have been created

 for (int j= 1; j < i; j= j+1) {

 b[i][j]= b[i-1][j-1] + b[i-1][j];

 }

 b[i][i]= 1;

 }

 return b;

 }

