
1

1

CS100J 01 April 2008�
More on arrays: Sorting: insertion- selection- quick- sort�

Haikus (5-7-5) seen on Japanese computer monitors

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!

Yesterday it worked.�
Today it is not working.�
Windows is like that.

A crash reduces�
Your expensive computer�
To a simple stone.

Three things are certain:�
Death, taxes and lost data.�
Guess which has occurred?

Serious error.�
All shortcuts have disappeared.�
Screen. Mind. Both are blank.

The Web site you seek

Cannot be located, but�
Countless more exist.

Chaos reigns within.�
Reflect, repent, and reboot.�
Order shall return.
 2

Reversing array segment b[h..k]

 reversed

h j k

post:
 b

b

 not reversed

h k

pre:

 1 2 3 4 5 6 7 8 9 9 9 9
b

h k

change:

into
 9 9 9 9 8 7 6 5 4 3 2 1
b

h k

3

Remove adjacent duplicates

 1 2 2 4 2 2 7 8 9 9 9 9
b

0 n
change:

into
 1 2 4 2 7 8 9 8 9 9 9 9
b

0 h n

postcondition:

b[0..h] = initial values in b[0..n] but with adj dups removed

don’t care what is
in b[k+1..n]

 ?
pre: b

0 n

orig values of b[0..n], no adj dups ? (unchanged)
post: b

0 h n

4

Sorting:

 ?

0 n

pre: b

 sorted

0 n

post: b

 sorted ?

0 i n
insertion sort

inv: b

for (int i= 0; i < n; i= i+1) {

}

“sorted” means in ascending order

2 4 4 6 6 7 5

i

2 4 4 5 6 6 7

i

Push b[i] down into its sorted

 position in b[0..i];

Iteration i makes up to i swaps. In worst case, number of
swaps needed is 1 + 2 + 3 + … (n-1) = (n-1)*n / 2.

Called an “n-squared”, or n2, algorithm.

5

 ?

0 n

pre: b

 sorted

0 n

post: b

Add property to invariant: first segment contains smaller values.

 ≤ b[i..], sorted ≥ b[0..i-1], ?

0 i n

invariant: b

selection sort

 sorted ?

0 i n

invariant: b

insertion sort

for (int i= 0; i < n; i= i+1) {

}

2 4 4 6 6 8 9 9 7 8 9

i n

2 4 4 6 6 7 9 9 8 8 9

i n

7
int j= index of min of b[i..n-1];

Swap b[j] and b[i];

Also an “n-squared”, or n2, algorithm.
 6

Quicksort
/** Sort b[h..k] */

public static void qsort(int[] b, int h, int k) {

}

if (b[h..k] has fewer than 2 elements)�
 return;

j= partition(b, h, k);

 <= x x >= x

 h j k

post: b

x ?

 h k

pre: b

int j= partition(b, h, k);

// b[h..j–1] <= x < b[j+1..k]

// Sort b[h..j–1] and b[j+1..k]

qsort(b, h, j–1);

qsort(b, j+1, k);

To sort array of size n. e.g. 215

Worst case: n2 e.g. 230

Average case:�
 n log n. e.g. 15 * 215

 215 = 32768

2

7

Sir Tony Hoare, Fritz Bauer

Quicksort author My advisor

Pioneer in computing in the 50's,
60's. Developer of the historical
computing section of the
Deutsches Museum �

Marienplatz, Munich �

8

Keypunch machine. In the 1960s
and early 1970s, a program was
punched on such cards. A card deck
containing a program to be run
would be taken out to the computer,
near the Ithaca airport, and run. Get
output back 3-4 hours after handing
in the card deck.
 Konrad Zuse's Z4

Zuse built the first working
computer in the late '30s, the
Z3, completed in 1941. The
original machine no longer

exists.

