
1

1

CS100J 27 May 2007 �
Developing arrays algorithms. Reading: 8.5

Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked.�
Today it is not working.�
Windows is like that.

A crash reduces�
Your expensive computer�
To a simple stone.

Three things are certain:�
Death, taxes and lost data.�
Guess which has occurred?

Serious error.�
All shortcuts have disappeared.�
Screen. Mind. Both are blank.

The Web site you seek

Cannot be located, but�
Countless more exist.

Chaos reigns within.�
Reflect, repent, and reboot.�
Order shall return.
 2

Developing algorithms on arrays

You will develop several important algorithms on arrays.

With each, we specify the algorithm by giving its precondition
and postcondition as pictures.

Then, you draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.

Four loopy questions —memorize them:

1.  How does loop start (how to make the invariant true)?

2.  When does it stop (when is the postcondition true)?

3.  How does repetend make progress toward termination?

4.  How does repetend keep the invariant true?

3

Getting an invariant as picture:

 ?

0 n

pre: b

 x not here x ? OR

0 i n

post: b

• Linear search.Vague spec.: find first occurrence of v in b[h..k-1].

 Better spec.: Store an integer in i to truthify:

 postcondition: (0) v is not in b[h..i-1]

 (1) Either i= k or v = b[k]

 x not here

0 n i

 b

4

Getting an invariant as picture:
Combine pre- and post-condition

Finding the minimum of an array

 ? and n >= 0

0 n

pre: b

 x is the min of this

0 n

post: b

5

Getting an invariant as picture:
Combine pre- and post-condition

Dutch national flag. Array

 ?

0 n

pre: b

 reds whites blues

0 n

post: b

6

Binary search: Vague spec: Look for v in sorted array segment b[h..k].

 Better spec:

 Precondition: b[h..k] is sorted (in ascending order).

Store in i to truthify:

 postcondition: b[h..i] <= v and v < b[i+1..k]

Below, the array is in non-descending order

 ?

h k

pre: b

 <= v > v

h i k

post: b

2

7

Partition algorithm:

b

b
 x ?

h k

pre:

 <= x x >= x

h j k

post:

 3 5 4 1 6 2 3 8 1
b

h k

change:

into

or

 1 2 1 3 5 4 6 3 8
b

h j k

 1 2 3 1 3 4 5 6 8
b

h j k

x is called the pivot value

(x is not a program variable; it just denotes the value initially in b[h].)

Swap elements of b[h..k] to produce:

8

Reversing array segment b[h..k]

 reversed

h j k

post:
b

b
 not reversed

h k

pre:

 1 2 3 4 5 6 7 8 9 9 9 9
b

h k

change:

into
 9 9 9 9 8 7 6 5 4 3 2 1
b

h j k

9

Remove adjacent duplicates

 1 2 2 4 2 2 7 8 9 9 9 9
b

0 n
change:

into
 1 2 4 2 7 8 9 8 9 9 9 9
b

0 h n

postcondition:

b[0..h] = initial values in b[0..n] but with adj dups removed

don’t care what is
in b[k+1..n]

