CS100J 11 March 2008
The while loop and assertions

Read chapter 7 on loops.
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:

Instead of trying out computer programs on test cases until they are debugged,
one should prove that they have the desired properties.

John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.
Paul Gries, CS, University of Toronto, 2005.

The while loop: syntax

while (<condition>) <condition>: a boolean expression.

<repetend> <repetend>: a statement.

while (<condition> { BUT: We almost always make the
sequence of declarations <repetend> a block.

and statements

The while loop
System.out.println(5*5); To execute the while loop:
System.out.println(6*6); (1) Evaluate condition k <= 8;
System.out.println(7*7); if false, stop execution.
System.out.println(8*8); (2) Execute the repetend.

(3) Repeat again from step (1).
int k=5;
while (k <=8) {
System.out.println(k*k);
k=k+1;

Trace execution of the loop:
Study section 7.1.2 shows
you how to “trace” execution
of a loop.

System.out.println(k*k);
k=k+1;

For loop, corresponding while loop <initialization>:

<initialization>; int k=b;

for (int k= b; k <= c; k=k+1) { while (k <= ¢) {
Process k Process k;

} k=k+1;

The while loop: 4 loopy questions

// Set ¢ to the number of ‘e’s in String s.
»s it start? (what i
int n= s length(); 1. H‘oyv. dgcs it b?an. (what is
the initialization?)
c=0;
// invariant: ¢ = number of ‘e’s in s[0..k-1]

for (int k= 0; k <n; k=k+1) { 2. When does it stop? (From
if (s.charAt(k) == ‘¢’) the invariant and the falsity of
cmcl: loop condition, deduce that

’ result holds.)

) 3. How does it make progress
toward termination?

// ¢ = number of ‘e’s in s[0..n-1]
4. How does repetend keep
invariant true?

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time. Separate our concerns.

/I Set ¢ to the number of ‘e’s in String s.

int n=s.length(); 1. How does it start? (what is

¢=0: k=0: the initialization?)

// invariant: ¢ = number of ‘e’s in s[0..k-1]

while (k < n) { 2. When does it stop? (From

the invariant and the falsity of

loop condition, deduce that
c=c+1; result holds.)

k= k+1;

if (s.charAt(k) == ‘e’)

3. How does it make progress
} toward termination?
// ¢ = number of ‘e’s in s[0..n-1]
4. How does repetend keep
invariant true?

Understanding assertions about lists

012345678

VIXYZX ACZZ Z This is a list of Characters

0 3k 8
v =c > azs | k[6 |
0 3k 8
v >C ? all Z’s k
0 K 8

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.

Suppose we have this while
loop, with initialization:
initialization;
while (B) {

repetend

}

Indicate
whether
each of
these 3
assertions
is true or
false.

We add the postcondition and
also show where the invariant
must be true:
initialization;
// invariant: P
while (B) {
/I {Pand B}
repetend
/I {P}
}
/{P}
// { ResultR }

The four loopy questions

Second box helps us develop four loopy
questions for developing or understanding a
loop:

1. How does loop start? Initialization
must truthify inv P.
2. When does loop stop?

Atend, Pand !B are true, and these must
imply R. Find !B that satisfies P && !B
=>R.

3. Make progress toward termination?
Put something in repetend to ensure this.

4. How to keep invariant true? Put
something in repetend to ensure this.

Develop loop to store in x the sum of 1..100.

We’ll keep this definition of x and k true:

x = sum of 1..k-1

1. How should the loop start? Make range 1.k-1

empty: k=1; x=0;

2. When can loop stop? What condition lets us

know that x has result? When k == 101

Four loopy
questions

3. How can repetend make progress toward termination? k= k+1;

4. How do we keep def of x, h, k true? x=x+K;

k=1; x=0;
// invariant: x = sum of 1..(k—1)
while (k !=101) {
x= x+k;
k=k+1;
}
/I {x=sumof 1..100 }

Roach infestation!

/*#* = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {

double roachVol= .001; // Space one roach takes
double aptVol= 20%20#8; // Apartment volume
double growthRate= 1.25; // Population growth rate per week

int w=0; // number of weeks
int pop= 100; // roach population after w weeks

/l'inv: pop = roach population after w weeks AND
Vi before week w, volume of the roaches < aptVol
while (aptVol > pop * roachVol) {

pop= (int) (pop * growthRate);

w=w+ 1;
}

return w;

/% = b*¥c, given c = 0 */

Iterative version of logarithmic
algorithm to calculate b**c.

public static int exp(int b, int c) {

if (c == 0) return 1;
if (c%2 = 0) return exp(b*b, ¢/2);

/** set z to b**c, given c = 0 */
int x=b; int y=c; int z= 1; !
/l invariant: z * x**y =b**c and0<y=<c

return b * exp(b, c-1);

while (y 1=0) {
if (y % 2 ==0)

{x=x*xy=y/2; } br0=1
else{z=z*x;y=y-1;} b¥*c= b * b¥*¥(c-1)
¥ for even ¢, b**c = (b¥b)**(c/

/I {z=b**c}

Algorithm is logarithmic in c,
since time is proportional to log ¢

Rest on identities:

Calculate quotient and remainder when dividing x by y

x/y =q+rly

21/4=4 + 3/4

Property: x=q*y +r and O0<r<y

/** Set q to and r to remainder.
Note: x>=0and y >0 */

int g=0; int r= x;
/linvariant: x=q*y+r
while (r>=y) {
r=r-y;
q=q+1;
}

andO<r

/{x=q*y+r and O<r<y} "

