
1

1

CS100J 06 March 2008

Read: Sec. 2.3.8 and chapter 7 on loops. �
The lectures on the ProgramLive CD can be a big help.

Some anagrams

A decimal point
 I'm a dot in place

 Animosity Is no amity

Debit card
 Bad credit

 Desperation A rope ends it

Dormitory
 Dirty room

 Funeral Real fun

Schoolmaster
 The classroom

 Slot machines Cash lost in 'em

Statue of liberty
 Built to stay free

 Snooze alarms Alas! No more Z's

The Morse code
 Here come dots

 Vacation times I’m not as active

Western Union
 No wire unsent

 George Bush
 He bugs Gore

Parishioners
 I hire parsons

 The earthquakes That queen shake

Circumstantial evidence
 Can ruin a selected victim

Victoria, England’s queen
 Governs a nice quiet land

Eleven plus two
 Twelve plus one (and they have 13 letters!)

2

Announcements �

1.  Prelim 2 next Thursday evening, 7:30PM, Olin 155.

 Yes, for-loops are not on this prelim.

2. Please complete an online questionnaire concerning your TA.

http://www.engineering.cornell.edu/TAEval/menu.cfm

This is a midterm evaluation. It is important, because your constructive
comments are used to help the TA improve, which may help you in this
course.

You probably received an
email about this. Please

complete the survey this week!

3

Assertion: true-false statement placed in a program�
to assert that it is true at that place.�

x = sum of 1..n
 x
 ?
 n
 1

x
 ?
 n
 2

x
 ?
 n
 0

x = product of 1..n

4

Precondition: assertion placed before a segment�
Postcondition: assertion placed after a segment�

// x = sum of 1..n

n= n + 1;

x= x + n;

// x = sum of 1..n

x
 3
 n
 2

precondition

postcondition

3
6

5

Solving a problem�

// x = sum of 1..n

n= n + 1;

// x = sum of 1..n

precondition

postcondition

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)

x= x + n+1;

6

Solving a problem�

// x = sum of 1..n-1

n= n + 1;

// x = sum of 1..n-1

precondition

precondition

What statement do you put here
so that segment is correct? (if
precondition is true, execution
of segment should make
postcondition true.)

x= x + n;

2

7

Execution of the for-loop

The for-loop:

for (int i= 2; i <= 4; i= i +1) {

 x= x + i*i;

}

loop counter: i

initialization: int i= 2;

loop condition: i <= 4;

increment: i= i + 1

repetend or body: { x= x + i; }

Iteration: 1 execution of repetend

To execute the for-loop.

1.  Execute initialization.

2.  If loop condition is false,
terminate execution.

3.  Execute the repetend.

4.  Execute the increment and
repeat from step 2.

i= 2;

i <= 4

i= i +1;

true

false

x= x + i*i;

// invariant

The invariant is an assertion about the variables that is true before
and after each iteration (execution of the repetend)
 8

for (int k= a; k <= b; k= k + 1) {

 Process integer k;

}

// post: the integers in a..b have been processed

// invariant: integers in a..k–1 have been processed

Loop invariant says which integers
have been processed (and what that
means). It is true before and after
each iteration.

If k is the next
integer to process,
which ones have
been processed?

A.  0..k

B.  0..k–1

C.  a..k

D.  a..k–1

E.  None of these

Iteration: 1 execution of
repetend

invariant: unchanging

Command
to do

something
and

equivalent
post-

condition

// Process integers in a..b

9

Finding an invariant: something that is true before�
and after each iteration (execution of the repetend).

// Store in double variable v the sum

// 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n

for (int k= 1; k <= n; k= k +1) {

 Process k

}

// v =1/1 + 1/2 + … + 1/n

What is the invariant?

A.  v = 1/1 + 1/2 + … + 1/n

B.  v = 1/0 + 1/1 + … + 1/k

C.  v = 1/0 + 1/1 + … + 1/(k–1)

D.  v = 1/1 + 1/1 + … + 1/(k–1)

E.  None of these

v= 0;

// invariant: v = 1/1 + 1/2 + … + 1/(k–1)

v = sum of 1/i for i in

 range 1..k-1

Command to do
something and

equivalent
postcondition

10

Find invariant: true before and after each iteration

for (int k= 0; k < s.length(); k= k +1) {

 Process k

}

// x = no. of adjacent equal pairs in s[0..s.length()-1]

What is the invariant?

A.  x = no. adj. equal pairs in s[1..k]

B.  x = no. adj. equal pairs in s[0..k]

C.  x = no. adj. equal pairs in s[1..k–1]

D.  x = no. adj. equal pairs in s[0..k–1]

E.  None of these

// invariant:

for s = ‘ebeee’, �
x = 2.

k: next integer to process.�
Which ones have been�
processed?

A.  0..k C. a..k

B.  0..k–1 D. a..k–1

E. None of these

x = no. of adjacent equal pairs in s[0..k-1]

// set x to no. of adjacent equal pairs in s[0..s.length()-1]
 Command
to do

something
and

equivalent
post-

condition

11

Being careful

// { String s has at least 1 char }

// Set c to largest char in String s

// inv:

for (int k= ; k < s.length(); k= k + 1) {

 // Process k;

}

// c = largest char in s[0..s.length()–1]

c is largest char in s[0..k–1]

1. What is the invariant?

2. How do we initialize c
and k?

A.  k= 0; c= s.charAt[0];

B.  k= 1; c= s.charAt[0];

C.  k= 1; c= s.charAt[1];

D.  k= 0; c= s.charAt[1];

E.  None of the above

An empty set of characters or integers has no maximum. Therefore,

be sure that 0..k–1 is not empty. Therefore, start with k = 1.

Command

 postcondition

12

Methodology for developing a for-loop

1.  Recognize that a range of integers b..c has to be processed

2.  Write the command and equivalent postcondition.

 // Process b..c

 // Postcondition: range b..c has been processed

3. Write the basic part of the for-loop.

for (int k= b; k <= c; k= k+1) {

 // Process k

}

4. Write loop invariant, based on the postcondition.

// Invariant: range b..k-1 has been processed

5.  Figure out any initialization.

Initialize variables (if necessary) to make invariant true.

6. Implement the repetend (Process k).

