
1

1

CS100J 7 February 2008

Discussion of Methods: Executing method calls. If-statements. The return
statement in a function. Local variables.

For this and next lecture: Read section 2.3 but NOT 2.3.8!!!!�
Do the self-review exercises in 2.3.4

Oxymoron: a combination for epigrammatic effect of contradictory or
incongruous words (as cruel kindness, laborious idleness)

airline food

 State worker

military intelligence

 peace force

Microsoft Works

 computer security

sanitary landfill

 tight slacks

religious tolerance

 business ethics

Congratulations!! You now know the basics of OO (object-
orientation). There are more odds and ends, which we will be
discussing, but the basics have been covered. We now turn to:

2

Method body: sequence of statements enclosed in { }�
(interspersed with declarations)�

to execute, in the order in which they appear

/** Constructor: a chapter with title t, �
 number n, and previous chapter null.*/

public Chapter(String t, int n) {

 title= t;

 number= n;

 previous= null;

}

Execute the three
assignments in the
order in which they
appear. Same
scheme is used
when a cook uses a
recipe.

We explain exactly how a method call is executed so
that you can understand how parameters and
arguments work.

3

The frame (the box) for a method call

Remember: Every method is in a folder (object) or in a file-drawer.

method name, instruction counter
 scope box

local variables (don’t deal with these now)

parameters

scope box contains
the name of entity
that contains the
method —a file-
drawer or object.

number of the statement of
method body to execute
next. Helps you keep track
of what statement to execute
next. Start off with 1.

Draw the
parameters
as variables.

4

Execution of a method call.

a0

K

p

setP(int x) { 1: p= x; }

t a0
Execute the call t.setP(7);

The first (and only)
statement is #1.

Procedure setP has one
parameter: x.

The call has one argument:
expression 7.

K

1. Draw a frame for the call.

2. Assign the value of the
argument to the parameter
(in the frame).

3. Execute the method body.
(Look for variables in the
frame; if not there, look in the
place given by the scope box.)

4. Erase the frame for the call.

5

Execute a function call
public class K {

 int p ;

 public int getP() {

 return p;

 }

}

1:

a1

K

p 5 getP()

1. Draw a frame for the call.

2. Assign the value of the
argument to the parameter
(in the frame).

3. Execute the method body.
(Look for variables in the
frame; if not there, look in the
place given by the scope box.)

4. Erase the frame for the call.
(and, if it is a function use the
value of the return-statement
expression as the function call
value

t a0
 K

x= t.getP() + 1;

x 3
 int

6

Local variable: a variable declared within a method body

/** = x + y */

public static int max(int x, int y) {

 int t;

 t= x + y;

 return t;

}

1

2

3

a0

C
p

setP(int x) { 1: p= x; }

 max(int x, int y) {…}

C’s file drawer

Evaluate this call.

 C.max(5, 6);

This time, when you create
the frame for the call, draw
parameters and local
variables:

1. Draw a frame for the call.

2. Assign arg values to pars.

3. Execute the method body.

4. Erase frame for call. (If it is
a function use value of return-
statement expr. as function call
value

2

7

/* Put smaller of x, y in z */

if (x < y) {

 z= x;

}

else {

 z= y; �
}

if statement

/* swap x, y to put larger

 in y */

if (x < y) {

 int t;�
 t= x;

 x= y;

 y= t;

}

Syntax: �
if (<boolean expression)�
 <statement>

Execution: if the
<boolean expression> is
true, then execute the
<statement>

if-else statement

Syntax: �
if (<boolean expression)�
 <statement1>�
else <statement2>

Execution: if the boolean
expression is true, then execute
<statement1>;�
otherwise, execute <statement2>

8

A function produces a result

/** = smallest of b, c, d */

public static int smallest(int b, int, c, int d) {

}

Execution of statement

 return <expr> ;

terminates execution of
the procedure body and

yields the value of
<expr> as result of

function call

Execution of function body must end by executing a return statement.

return d;

if (b <= c && b <= d) {

 return b;

}

Assertion

// { The smallest is either c or d }

if (c <= d) {

 return c;

}

// { the smallest is d }

9

Syntax of procedure/function/constructor and calls

public <result type> <name> (<parameter declarations>) { … }

public void <name> (<parameter declarations>) { … }

public <class-name> (<parameter declarations>) { … }

function

procedure

constructor

<name> (<arguments>)

<name> (<arguments>) ;

new <class-name> (<arguments>)

function call

procedure call

constructor call

Exec. of a function body must terminate by executing a statement

“return <exp> ;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes a new object of class <class-name>.

<arguments>: <expression>, <expression>, …, <expression>

10

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** = the max of x and y */

public static int max(int x, int y) {

 // Swap x and y to put the max in x

 if (x < y) {

 int temp;

 temp= x;

 x= y;

 y= temp;

 }

 return x;

 }

scope of temp

You can’t use temp down here

This is an error.

11

Local variable: a variable declared in a method body

Scope of local variable: the sequence of statements following it.

/** s contains a name in the form exemplified by “David Gries”.

 Return the corresponding String “Gries, David”.

 There may be 1 or more blanks between the names. */

public static String switchFormat(String s) {

 // Store the first name in variable f and remove f from s

 int k; // Index of the first blank in s

 k= s.indexOf(' ');

 String f; // The first name in s.

 f= s.substring(0, k);

 s= s.substring(k);

 // Remove the blanks from s

 s= s.trim();

 return s + ", " + f;

}

scope of k

scope of f

Numbering of
characters in a String:�
 012345�
“abcdef”

declaration

assignment

