
CS100J Lab 05. Class Vector Spring 2008

Name ___________________ Netid_____________________

Class java.util.Vector provides the ability to maintain a growable/shrinkable list of objects. You don't
know ahead of time how many objects will be in the final list! In this lab you will gain some experience
with class Vector and learn just how useful it can be. This material is covered in Sec. 5.3 (pp. 184--188) of
the text. After the lab, study that section. Also, the API is your friend. Use it! For this lab, you can go
directly to the Vector page of the API. Clicking the link will open the page in a new window.

A History Lesson

The developers of Java knew early on that they wanted some kind of growable list, so they created class
Vector and shipped it out with Java v1.0. Later, however, they wanted to generalize the idea of a list. So
they created new classes that provide a more general implementation than Vector. Rather than get rid of
Vector —for "backward compatability" reasons, you can't simply throw out old stuff— for Java v1.2 the
developers added new methods to class Vector so that it would be consistent with the other, newer, classes.
Many of these new methods do the same thing as the old ones. Some of the old ones are
"deprecated"(deprecate means to disapprove of, often with mildness). But they will NOT go away, and you
can use them.

Caution: Another important history lesson

Several years ago, Java switched from version 1.4 of the language to version 1.5. Java 1.5 and Java 1.6
makes it easier to work with Vectors of a particular class of elements, like a Vector of elements of class
Character, which we will be working with here. If your computer has Java 1.4, you have two options:

1. Deinstall the Java 1.4 compiler and install Java 1.5 or 1.6.
2. For this lab, follow the instructions in the comment that appears at the top of file Lab05.java, which

you will obtain later from the course web page.

What a Vector contains:

A Vector v contains a list of elements, numbered 0, 1, 2, Function v.size() tells how many elements
are in the list. We use the following non-Java notation to refer to parts of the list. The notation helps us
write things more clearly and succinctly. We refer to the elements in the list as v[0], v[1], ..., v[v.size()–
1]. If we want to refer to part of the list, say elements v[h], v[h+1], ..., v[k], we write v[h..k].

In Java 1.5, you create a Vector that can contain elements only of a class C and store its name in a variable
using this assignment and new expression:

Vector <C> v= new Vector <C>();

The appearance of <C> says that the Vector may contain only elements of class C. In this lab, we will be
working with Vector<Character>, meaning a Vector whose elements are of class Character.

Vector v has a capacity, which is the number of elements for which space has been allocated. This is
different from its size, which is the number of elements in it. When an element is to be added to v but the
size is already equal to the capacity, Java allocates space for more elements —for reasons of efficiency, the
capacity is usually doubled. The capacity can also be controlled by the programmer.

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Here is a list of the old methods, the corresponding new ones, and what they do:

Old method New method Purpose

v.addElement(Object ob) v.add(Object ob)
append ob to v's list. If v's type is class
Vector<C>, ob should be of class C or a
subtype of C.

v.insertElementAt(int k, Object ob) v.add(int k, Object ob)
change v's list to v[0..k-1], ob, v[k..]. If
v's type is class Vector<C>, ob should
be of class C or a subtype of C.

v.elementAt(int k) v.get(int k) = v[k]

v.removeElement(Object ob) v.remove(Object ob) remove ob from the list in v (if it is
there)

v.removeElementAt(int k) v.remove(int k) remove v[k] from v's list, changing it to
v[0..k-1], v[k+1..]

v.removeAllElements() v.clear() remove all elements from v

v.setElementAt(Object ob, int k) set(int k, Object ob) replace v[k] by ob

Other useful methods in class Vector are:

v.size() = the number of elements in v's list

v.capacity() = the number of elements that are currently allocated for v's list --this can
be different from the number of elements that are actually IN v's list!

v.indexOf(Object ob) = i, where v[i] is the first occurrence of ob in the list

v.lastIndexOf(Object ob) = i, where v[i] is the last occurrence of ob in the list

v.toString() = a comma-separated list of the elements in v, enclosed in brackets

Task 1. Experimenting with Vector

Download file Lab05.java from the course website or from here. This program will help you understand
exactly what is happening when you call various methods of a Vector.

Look over the code that we have provided. We have defined a Vector<Character> v, which you will use
throughout this lab. It is public, so you can access it from the Interactions pane of DrJava. We have also
defined two constructors, which will illustrate different qualities of Vector. Read the specifications so you
understand what each one does. Don't worry about the stub methods yet —the ones you have to write; you'll
get to them later.

Compile class Lab05 and type this into the interactions pane.

file:///Volumes/Work15A/CS100Spring2008/handouts/labs/lab05program/Lab05.java

lab= new Lab05();

A window should appear at the top of your screen containing a drawing of numbered boxes. This drawing
represents Vector<Character> object v in class Lab05. Note that there are 10 empty boxes, numbered 0-9.
The numbers are called indices or indexes. You use them to refer to the objects in the boxes.

Method add has a parameter of class Object. However, since Vector v was created using new
Vector<Character>(), only objects of class Character can be added to v. If v had been created using new
Vector<Object>(), you would have been able to add ANY Java object to a Vector. But you cannot add
primitive-type values such as int or char values. This is one area where wrapper classes are useful!

To avoid the problem of drawing arbitrary objects in the little boxes, only instances of class Character are
drawn. Any other object will be drawn as a red question mark.

Resize your DrJava window so that it doesn't block the drawing. Now try the following in the Interactions
pane:

> lab.v.add(new Character('A'));

A Character object that wraps 'A' has been added to Vector v, and you can see it in box 0.

Note: If you are using Java 1.5, you can write simply "lab.v.add('A')", and the character 'A' will
automatically be wrapped in an object of class Character for you.

Now type:

> lab.v.remove(new Character('A'));

And it's gone from v. Note that you passed in two different objects to methods add and remove. Vector uses
method equals of each element v[i] of Vector v, and for elements of class Character, v[i].equals(ob)
yields true if the character in v[i] is the same as the character in ob.

Type the following command to put some more objects in Vector v:

> lab.initializeV();

Look over the drawing. Note that an object can appear many times in the same list ('3' and '2' both appear
twice). Now try the commands on the left in the table below, in the Interactions pane. On the right, write
down what the command returned (if anything) and what happened to the Vector drawing. If you don't
understand WHY certain commands do certain things, ask!

Tip 1: Use the up arrow key to get your previous command instead of repeatedly typing in "new
Character...".
Tip 2: Make sure you're watching the Vector drawing when you hit Enter to execute your commands in the
Interactions pane! It will be much easier to see what happened.
Tip 3: Make sure you leave off the semicolon when you make a function call —otherwise, DrJava will not
show you what the function returned.

lab.v.add(new Character('B'));

lab.v.remove(new Character('3'));

lab.v.remove(new Character('7'));

lab.v.indexOf(new Character('1'))

lab.v.indexOf(new Character('B'))

lab.v.get(5)

lab.v.get(12)

lab.v.indexOf(lab.v.get(2)) What is this call doing?

lab.v.indexOf(lab.v.get(8)) Why doesn't this return 8?

lab.v.firstElement()

lab.v.set(1, new Character('O'));

lab.v.capacity()

lab.v.size()

lab.v.toString()

lab.v.trimToSize();

lab.v.setSize(12); What is in the cells that have red question marks?
Is the new capacity also 12?

Task 2: Writing methods to manipulate a Vector

We have written four method stubs for you to implement; implement them:

public void swap(int first, int second) Swap the objects at v[first] and v[second]

public boolean moreThanOne(Object obj) = "there is more than one occurrence of obj in v"
Hint: We did something similar in Lab 03 with Strings.

public boolean hasExtraSpace() = "there is space allotted to v that is not being used"

public String toString() = a string that has contains the characters of v, in order

Show your work to your TA or a consultant.

