

2004 Spring Prelim 3 Solutions

Question 1: (15 points)

Part (a): (7 points)
A 1-d array has the values {19, 11, 3, -2, 1, 30}. Suppose we will sort the array in ascending order using the
selection sort algorithm. The first line below shows the original state of the array. Write on each subsequent line
the values in the array after one iteration of the selection sort algorithm (an “iteration” is one pass through the
outer loop of the algorithm).

Original state: 19 11 3 -2 1 30

After first iteration:

After second iteration:

After third iteration:

Part (b): (8 points)

Complete the code fragment below to find the first occurrence of a target integer value in an array of integers.
Assume x, a 1-d array of int values, has been created.

int target= JLiveRead.readInt(); //Value to look for in the GIVEN int array x

//Find and print the location of the first occurrence of target in array x.
 int k= 0;

 while (__k < x.length && x[k] != target_____________________)

 k++;

 if (_____k < x.length___)
 System.out.println(“Target found at position ” + k);
 else
 System.out.println(“Target not found”);

-2 11 3 19 1 30

-2 1 3 19 11 30

-2 1 3 19 11 30

This condition must be the first one.

 1

2004 Spring Prelim 3 Solutions

Question 2: (20 points)

Complete method charsToInt to convert an array of chars to the integer value that the array represents. The
method returns the integer value. For example, the char array with the characters ‘0’, ‘2’, ‘0’, ‘4’ represents the
integer value 204. You may use pre-defined methods from the Math class only. (But you don’t have to use any
pre-defined methods at all!)

Hint: Remember that we use base 10 numbers. For example, the integer value 2014 can be obtained by the
following calculation: 4 + 1*10 + 0*100 + 2*1000.

/** = Integer value represented by char array digits. Assume array digits contains
 * only digit characters (no letters, blanks, positive or negative signs, etc.)
 */
public static int charsToInt(char[] digits) {

 int value; //the value that array digits represents.

 //Start summing from units position

 value= digits[digits.length-1] - '0';

 int tens= 10; //power of 10 to be multiplied by next digit

 for (int i=digits.length-2; i>=0; i--) {

 value += (digits[i]-'0')*tens;

 tens *= 10;
 }

/** Grading notes:
- converting from char to int: no need to first cast char as int, but if student did it, it’s ok
- using Math.pow: int value of digit[i] should multiply Math.pow(10, digits.length-1-i)
- if student’s algorithm is clear enough, no comments are necessary
*/

 return value;

}

 2

2004 Spring Prelim 3 Solutions

Question 3: (30 points)

Complete classes BadCoin and Q3 below to simulate the tossing of a weighted coin. Toss the coin 1000 times.
Count the number of times that tails immediately follows heads. For example, in the following sequence of
outcomes (heads or tails), tails immediately follows heads three times:

heads, heads, heads, tails, heads, heads, tails, tails, heads, heads, heads, tails

/** A weighted Coin where heads (0) shows up three times as often as tails (1) */
class BadCoin {
 private int face; //face-up: 0 is heads; 1 is tails

 /** Constructor: face has random value */
 public BadCoin() { roll(); }

 /** Assign a random value to face given the weighted property of Bad coin. */
 public void roll() {

 }

//{3/4 probability to be 0}
 if (Math.random()<0.75) face= (int) (Math.random()*4); //in [0..3]

 face= 0; if (face>1) //change 2,3 to 0
 else face= 0;
 face= 1;

 /** = Get the face shown by this BadCoin. */
 public int getFace() { return face; }
}

public class Q3 {
 public static void main(String[] args) {
 //Declare and instantiate a 1-d array toss to store the sequence of outcomes.

 //Simulate the tossing of a BadCoin. toss[k] has the value 0 for heads or 1

int[] toss= new int[1000];

 //for tails. Count the number of times that tails immediately follows heads.
 int count= 0; //no. of times tails immediately follows heads so far

 toss[0]= (new BadCoin()).getFace(); //ok to split into 2 statements:
 // 1) BadCoin c= new BadCoin();
 // 2) toss[0]= c.getFace();

 for (int i=1; i<1000; i++) {

 toss[i]= (new BadCoin()).getFace();

 if (toss[i-1]==0 && toss[i]==1)

 count++;
 }

/** Grading notes:
A less efficient solution uses 2 separate loops: 1st to put values in toss; 2nd to do
the pair-wise comparisons. Accept this solution without penalty.
Pay attention to the bounds of the loop to do pair-wise comparisons:
 Start at 1 and go to 999 if you check positions i-1 and i
 Start at 0 and go to 998 if you check positions i and i+1
*/
}

3
}

2004 Spring Prelim 3 Solutions

Question 4: (35 points)

Complete class CDOrganizer below. Class CDOrganizer is a client of class Song, which is given (you
don’t write code for class Song). Class CDOrganizer keeps track of the Songs that one wants to write to a
blank CD, the length of the Songs, as well as the remaining time left on the CD (so that you don’t try to write
more than a CD can hold).

Class Song below shows only the variable declarations and the method headers. Assume class Song is
implemented correctly.

/* Class Song */
class Song {
 private String artist; //artist of a Song
 private String title; //title of a Song
 private double minutes; //minutes of a Song

 /** Constructor: assign values to fields artist, title, and minutes */
 public Song(String artist, String title, double minutes) {...}

 /** Getters */
 public String getArtist() { ... }
 public String getTitle() { ... }
 public double getMinutes() { ... }
}

Class CDOrganizer has the following variables and methods:

• Class constant MAXsongs has the value 30, representing the maximum number of songs on the CD
• Instance variable minutes: remaining minutes left on the CD (type double)
• Instance variable songs: 1-d array of the Songs on the CD. Array length is MAXsongs.
• Instance variable time: 2-d array of int with dimension MAXsongs-by-2. Each row stores the time of a

Song such that the first cell is the number of minutes and the second cell is the number of seconds. For
example, if the first Song on the CD is 3.5 minutes long, then the first row of array time has the values 3,
30. You may round or truncate the value for seconds as you wish.

• A constructor that has one input parameter specifying the available minutes on a blank CD. It also
instantiates arrays songs and time.

• Instance method addSong(Song s) adds Song s to the next available spot in the songs array, update
array time, and adjusts the amount of free time remaining on the disc. Assume there is no time gap
between Songs.

Do not define any other instance (or class) variables or methods.

Read the incomplete class below before you start writing code! Follow the specifications above and in the
comments. You must use the variable and parameter names and types as specified above.

public class CDOrganizer {

 public static final int MAXsongs= 30; //Maximum number of songs on the CD

 private double minutes; //Minutes remaining on the CD

 private ___Song[]_____________ songs; //1-d array of Songs on the CD

 private ___int[][]____________ time; //2-d array of time of the Songs on the CD

 //Class CDOrganizer continues on next page

 4

2004 Spring Prelim 3 Solutions

5

 //Class CDOrganizer, continued (Question 4, continued)

 /** Constructor: CD has m free minutes. Instantiate arrays songs and time to
 * hold the maximum number of Songs allowed. */
 public CDOrganizer(double m) {

 } //class CDOrganizer

 }

minutes = m;

songs = new Song[MAXsongs];

time= new int[MAXsongs][2];

 /** Instance method addSong adds Song s to the next available spot in the songs
 * array and updates the field minutes and the array time. If another Song of
 * the same title is already on the CD, if there are already MAXsongs songs on
 * the CD, or if the CD does not have enough remaining time to include Song s,
 * then the method displays the message “ERROR!” and does not add Song s. */
 public void addSong(Song s) {

 }

int i = 0;
boolean sameSong = false;

while (i < MAX_SONGS && songs[i] != null && !sameSong) {

sameSong = (songs[i].getTitle().equals(s.getTitle()));
//we’ll ac

 i++;
cept sameSong = (songs[i].getTitle() == s.getTitle());

}
if (sameSong ||
 i >= MAX_SONGS ||
 s.getMinutes() > minutes
)

 System.out.println(“ERROR!”);

else {
 songs[i] = s;
 minutes -= s.getMinutes();
 time[i][0]= (int) s.getMinutes();
 time[i][1]= (int) ((s.getMinutes() - time[i][0])*60);
}

/** Grading criteria:
Find the correct index in the array (loop, stay in-bound, cell not null, check title)
Choose to add or not (if, array has space, there’s enough time, not same title)
Add song (assign to songs array, adjust minutes, adjust time)
Not add song (print error message)
*/

Must use these parantheses

