

 2004 Spring Prelim 2 Solutions

Question 1: (20 points)

Part (a): (6 points)
Define “method signature.” Be concise. Method signature is the method name and input
parameter types (including the order), but excludes the return type

Part (b): (11 points)
Consider class Q1b below. The specification and header for method timeInSec is shown but the method body
is hidden. Assume that method timeInSec has been correctly implemented—it can be called from method
main. The numbered statements are attempts to call method timeInSec. Write on the blank following each
call the word “good” if the call is correctly written or the word “bad” if the call is incorrect.

public class Q1b {

 /** = number of seconds from 00:00:00 to h:m:s. Return whole seconds only. */
 public static int timeInSec(int h, int m, double s) {
 // Code not shown. Assume method is implemented correctly.
 // ...
 }

 public static void main(String[] args){

 int h=20, m=58; //hour, minute
 double s=12.6; //second
 int sec;

 sec= timeInSec(20, 58, 12.6); //1. good____________________

 sec= timeInSec(h, m, s); //2. good____________________

 sec= timeInSec(h, m, (int) s); //3. good____________________

 double d= timeInSec(h, m, (int) s); //4. good____________________

 sec= timeInSec(h, (int) Math.round(m + s/60)); //5. ___________________bad__

 sec= timeInSec(new String(h+“:”+m+“:”+s)); //6. ___________________bad__

 System.out.println(timeInSec(20, 58, s)); //7. good____________________

 sec= Q1b.timeInSec(20, 58, s); //8. good____________________

 sec= class.timeInSec(20, 58, s); //9. ___________________bad__

 sec= static.timeInSec(20, 58, s); //10. __________________bad__

 sec= this.timeInSec(20, 58, s); //11. __________________bad__
 }
}

Part (c): (3 points)
Our textbook (and Program Live) discusses a technique used in programming that was used also by Edgar Allan
Poe in writing his poem The Raven. What is this technique?

Top-Down design or iterative refinement

 1

 2004 Spring Prelim 2 Solutions

Question 2: (20 points)

Consider the sequence

1, 2, -3, 4, 5, -6, 7, 8, -9, …
Given n>0, write a program fragment to display the first n terms of the sequence in reverse order. Also display
the sum of the sequence. For example, if n is 4, the sequence displayed should be

4
-3
2
1

and the sum of the sequence is 4+(-3)+2+1 = 4. Do not use arrays.

public class Q2 {
 public static void main(String[] args) {

 System.out.println(“Enter a positive integer:”);
 int n = JLiveRead.readInt(); //Number of terms in the sequence to print
 //Assume n is positive

 int sum; //Sum of the first n terms in the sequence

 //Display the first n terms of the sequence in reverse order and calculate the
 //sum.

 num= n;
 sum= 0;

 int value; //The value of the sequence to print and sum

 for (; num>0 ; num--) {

 if (num%3==0)
 value= -num;
 else
 value= num;

 System.out.println(value);

 sum += value;

 }

 System.out.println(“The sum of the first ” + n + “ terms is ”+ sum);

 } //method main

} //class Q2

 2

 2004 Spring Prelim 2 Solutions

Question 3: (40 points)

Complete classes Rectangle and Q3 below. Class Rectangle represents a rectangle and has the following
variables and methods:

• Instance variables width and height: the width and height (type double) of a Rectangle
• A constructor that has two parameters: double width, double h
• Instance method area() returns the area (type double) of the current Rectangle
• Instance method isSquare() returns true if the current Rectangle is a square, false otherwise
• Instance method cutHalf() cuts off vertically half of the current Rectangle
• Instance method toString() gives a String description of the dimensions (width and height) and

area of the current Rectangle
• Class method average(Rectangle r1, Rectangle r2) returns a new Rectangle with

dimensions that are the average values between Rectangles r1 and r2
• Do not define any other instance or class variables/methods

Class Q3 is a client class of Rectangle. Class Q3 has a single method main where you will create one
Rectangle. Then you will repeatedly cut the Rectangle in half until it becomes a square or its area is less
than a specified value. Print the information of the final Rectangle.

Read through both incomplete classes before you start writing. Follow the specifications above and in the
comments. You must use the variable and parameter names and types as specified above. Use encapsulation (use
the modifiers private and public appropriately). To indicate that a blank (or box) should be left empty,
draw a diagonal line across the blank or box.

/** A rectangle */
class Rectangle {

 ____private_______________ double width; //width of the Rectangle

 ____private_______________ double height; //height of the Rectangle

 /** Constructor: assign values to the fields */

 ____public Rectangle_______________________________ (double width , double h){

 }

 /** = Get area of this Rectangle */

 ____public double___ area() {

 this.width= width;
 height= h;

 return width * height;

 }

 3

 //Class Rectangle continues on next page

 2004 Spring Prelim 2 Solutions

 //Class Rectangle, continued (Question 3, continued)

 /** = This rectangle is a square */

 ____public boolean ___ isSquare() {

 }

 return width==height;

/** Cut off vertically half of this Rectangle. I.e., reduce the width by half */

 ____public void__ cutHalf() {

 }

 width /= 2;

 /** = String description of the dimensions and area of this Rectangle */

 ____public String__ toString() {

 return height + "-by-" + width +
 " rectangle has area " + area();

 }

 /** A Class method. = Get a new Rectangle whose width is the average width
 * between r1 and r2 and whose height is the average height between r1, r2 */

 ____public static Rectangle_____________ average(Rectangle r1, Rectangle r2) {

 }

 return new Rectangle((r1.width+r2.width)/2,
 (r1.height+r2.height)/2);

} //class Rectangle

//Question 3 continues on next page

 4

 2004 Spring Prelim 2 Solutions

/* Class Q3, client of class Rectangle (Question 3, continued) */
public class Q3 {
 public static void main(String[] args) {

 //Create a Rectangle object, use reference variable rec:
 double w = JLiveRead.readDouble(); // width of rec
 double h = JLiveRead.readDouble(); // height of rec

Rectangle rec= new Rectangle(w,h);

 //Repeatedly cut rec in half until it becomes a square OR until its area
 //is less than MINarea. Display Rectangle rec’s data at the end.
 final double MINarea= 10;

for (;
 !rec.isSquare() && rec.area()>=MINarea ;
 rec.cutHalf());

System.out.println(rec);

//Above, need to have ; or {} after for-loop header

/* Anther CORRECT loop condition:
 !(rec.isSquare() || rec.area()<MINarea)

 A WRONG loop condition:
 !rec.isSquare() || rec.area()>=MINarea
 */

 } //method main
} //class Q3

 5

 2004 Spring Prelim 2 Solutions

Question 4: (20 points)

Typically, a student has a bursar account representing the amount that she or he owes the university. Design a
class Account whose instances represent students’ bursar accounts. An account is associated with a student
name and a student ID and has a balance. It should be possible to retrieve these values. Furthermore, it should be
possible to charge to (increase balance of) and make payment to (decrease balance of) the account. It should be
possible to determine if the account has an owing balance so that a statement can be printed (showing the student
name, ID, and balance).

Design the class by writing variable declarations and method specifications and headers. Use meaningful variable
and method names. Specifications (comments) must be concise. Do not write the method bodies!

/** A student’s bursar account */
class Account {

 private String name; //Student name
 private String id; //Student ID (type int is ok)
 private double balance; //Account balance

 public Account(String name, String id, double initBalance)

 /** Getter methods */
 public String getName()
 public String getID()
 public double getBalance()

 /** Charge an amount on this Account */
 public void charge(double amount)

 /** Make a payment (amount) to this Account */
 public void paymentMade(double amount)

 /** = This Account has an owing balance */
 public boolean hasOwingBalance()

 /** = String description of Account data */
 public String toString()
}

• One must define instance variables using comments.
• Most methods should have specifications (comments) above the header.
• One may choose to have a method for printing instead of a toString method.
• One may write just one method to determine owing balance and to print (not toString), but the specification must be

very clear about all its functionality.
• One may choose to have an instance variable isOwing instead of an instance method hasOwingBalance.
• The only methods that need parameters are the constructor, charge, and paymentMade.
• If the constructor doesn’t have parameters, then there must be setter methods.
• The constructor does not have to have a parameter for initial balance, assuming that all accounts open with 0 balance.
• Methods charge and paymentMade do not need to return anything, but if one makes them return a value, the value

must be clearly specified (to explain why).
• Methods charge and paymentMade may be combined as one method, but the specification then must clearly talk

about positive vs. negative parameter values.

 6

	Top-Down design or iterative refinement

