
CS100 April 18, 2000
Prelim 3 7:30 PM – 9:10 PM

___ _________________
(Print last name, first name, middle initial/name) (Student ID)

Statement of integrity: I did not, and will not, break the rules of academic integrity on this exam:

__

 (Signature)

Circle Your Section:

Instructions:

• Read all instructions carefully, and read each problem completely before starting it!
• This test is closed book – no calculators, reference sheets, or any other material allowed.
• Initial or sign each page.
• Conciseness, clarity, and style all count. Show all work to receive partial credit. Named constants aren’t needed.
• Carefully comment each loop and major variable.
• If you use System.exit() or break to exit any control structure, you will lose points!
• You may not alter the structures surrounding blanks and boxes. Only one statement, expression, or comment per

blank!
• Use the backs of pages if you need more space or scrap. You may request additional sheets from a proctor.
• If you supply multiple answers, we will grade only one.

Core Points:

1. ________ (28 points)_________

2. ________ (25 points)_________

3a. ________ (28 points)_________

3b. ________ (19 points)_________

Total: ________ /(100 points)_________

Bonus Points: ________ / (7 bonus points) _______

Tuesday Wednesday Thursday

PH 219 HO 401 HO 306 PH 403 PH 307 HO 401 HO 306 HO 320 HO 306

12:20 13 Yan

1:25
1 Holland-

Minkley
2 Yan 11 Artemov

6 Holland-
Minkley

7 Rohde 10 Fan 14 Hande 12 Artemov

2:30
3 Holland-

Minkley
5 Yan 8 Artemov

3:35 4 Fan 9 Artemov
Page 1

CS100 Prelim 3 Initial or Name: Page 2
Problem 1 [28 points] 2-D arrays

Fill in the box below to complete the method int[][] collapse(int[][] x). This method takes a non-empty
rectangular integer array x with an even number of columns and returns a new array with half the elements of x:
• On rows with even indices, keep columns with even indices.
• On rows with odd indices, keep columns with odd indices.
If you superimpose a “checkerboard pattern” on the old array x, you would extract numbers on the black squares, as
demonstrated below:

Hint: You don’t need to loop over every column – skip every other column.

// Given a non-empty, even-width array x, return a new array of half the width,
// storing only x’s even columns on even rows and only x’s odd columns on odd rows.

int[][] collapse(int[][] x) {

} // method collapse

old array new array

0 1 2 3 0 1

0 91 -2 -8 -11

→
0 91 -8

1 5 79 -96 24 1 79 24
2 22 24 88 98 2 22 88

CS100 Prelim 3 Initial or Name: Page 3
Problem 2 [25 points] Strings, Characters, Encryption keys

Definitions: Recall that an encryption key is made up of two strings of characters that form the top and bottom lines of the key:
• Both lines have the same length, same letters, and no duplicates of any letter.
• The top line of the encryption key maps to the bottom line.
Every key has an equivalent canonical representation: An encryption key is canonical if its top line is sorted.

Goal: Write a method String canon(String top, String bottom) that
• Takes as input the top and bottom lines of an original, or given, encryption key
• Returns the bottom line of the equivalent canonical key
Note that you don’t know if the top line of the given encryption key is sorted.

Algorithm: Efficiency counts, so use this algorithm to compute the bottom line of the canonical key:
for each letter in the original (given) top line (from left-to-right)

place the corresponding letter from the original (given) bottom line into the new bottom line

Example: The following figure demonstrates this approach:

The canonical key starts with an “empty” bottom line, where the question mark (?) represents an unknown value. You do not
need to create the canonical top line! To “fill” the canonical bottom line, follow these steps:
① Create the empty canonical bottom line. Remember that you know that the canonical key has a sorted top line, so you

know where each letter will occur in the canonical top line.
② Pick mapping ’b’→’a’. In the canonical key, place the ’a’ in the bottom line underneath the ’b’.

③ Pick mapping ’c’→’c’. In the canonical key, place the ’c’ in the bottom line underneath the ’c’.

④ Pick mapping ’a’→’b’. In the canonical key, place the ’b’ in the bottom line underneath the ’a’.
Assume the input encryption key involves only consecutive lower-case English letters starting at ’a’, e.g., ’a’-to-’c’, as in
the example above, or ’a’-to-’r’, or maybe ’a’-to-’z’.

Hints: A character can be cast to and from integers. Also, recall the following instance methods from class String which
might help:
• int indexOf(char c): the position of first occurrence of c
• char charAt(int i): the character at position i
• new String(char[] c): a new String with the same contents as character array c
• char[] toCharArray(): a character array with the same contents of a String
• int length(): length of a String

What to do: On the next page, either fill in the blanks (Choice 1), or fill in the box (Choice 2). Give ONLY ONE solution, so
clearly mark the choice you wish us to grade, or we will choose. In either case, use good style and comment your code.
Efficiency and conciseness count!

This space is intentionally left blank.

① ② ③ ④

Given Canon Given Canon Given Canon Given Canon

b c a a b c → b c a a b c → b c a a b c → b c a a b c

a c b ? ? ? a c b ? a ? a c b ? a c a c b b a c

CS100 Prelim 3 Initial or Name: Page 4
Choice 1: Fill in the Blanks
// Return bottom line of a canonical key equivalent to given key with
// top and $bottom$. Hints: Remember to return a String! Also, see b.

String canon(String top, String bottom) {

___________ b = ____________________________ ; // _________________________________

// __

for (int i = ________ ; ________ < ___________________________ ; _________)

 __________________________________ = ________________________________ ;

___ ;

} // method canon

Choice 2: Write your own code. See Choice 1 for a proposed structure for your code, including comments.
// Return bottom line of a canonical key equivalent to given key with top and
// $bottom$. Hint: Remember to return a String!

String canon(String top, String bottom) {

} // method canon

CS100 Prelim 3 Initial or Name: Page 5
Problem 3 [47 points] OOP!

Goal: Fill in the blanks on Pages 6–7 to complete classes Rect and World. A complete Main Class Q4 is shown at the
bottom of Page 7. You must use the blanks and must not alter any structure! Problem 3 consists of Parts 3a and 3b:

3a) [28 points] Write a Rect class that uses graphics to paint rectangles on a computer window:
• integer instance variables: left, right, top, bottom for a rectangle’s boundaries.
• constructor Rect: initialize the fields of a new Rect object
• method paint: paint the Rect filled-in with a specified color using the specified Graphics object
• method overlap: return a new Rect equal to the intersection, or overlap, of the Rect with another Rect r. Overlap

and intersection both mean the area shared by overlapping rectangles. This area is a rectangle as well!

3b) [19 points] Do the following tasks for class World:
• complete constructor World to create n randomly placed Rects
• make sure the randomly placed Rects fit completely inside the 300 x 300 World.
• complete method paint to draw Rects, intersections of pairs of Rects, and intersections of triples of Rects.

See below for an example World with three Rects:

Notes:
• Use the overlap algorithm to create and return the Rect that is the intersection of two original Rects. The overlap has:

left = right-most of original Rects’ lefts; right = left-most of original Rects’ rights
top = bottom-most of original Rects’ tops; bottom = top-most of original Rects’ bottoms

• Recall that Math.max/Math.min return the maximum/minimum of two numbers.
• Use Graphics.fillRect(int x, int y, int width, int height) to paint a rectangle. Parameters x

and y represent the top and left coordinates of the rectangle, respectively.
• An empty rectangle means that a Rect has right<left, meaning the width (right<left) is negative, or

bottom<top, meaning the height (bottom–top) is negative.
• Method fillRect and our overlap algorithm already handle empty rectangles appropriately: fillRect paints nothing

for empty Rects, and the overlap algorithm returns an empty Rect for non-intersecting rectangles. (An empty Rect
doesn’t intersect any Rects.)

What to do:
• Fill in the blanks on Pages 6–7 with declarations, expressions, and statements.
• Read each comment! The comments indicate the purpose of subsequent code and instruct you on what to write!
• Use good style – Conciseness counts!

Bonus: [5 bonus points]
Use encapsulation – explicitly label each instance variable and instance method as private or public such that variables
are not accessible from class World. But, ensure that Rects and their intersections can still be drawn from class World.

No overlap: paint green

2 Rects overlap: paint red

3 Rects overlap: paint black

Key

300

300

World

Rect

Rect

Rect

CS100 Prelim 3 Initial or Name: Page 6
3a) [28 points] Reminder: FILL IN ALL BLANKS! Read all comments and code carefully and be sure your code is
consistent with them. Some comments indicate instructions and variables to use. We repeat, READ THE COMMENTS!

import java.awt.*;

// A rectangle

class Rect {
// instance variables for boundaries of rectangle: left, right, top, bottom

______________________________________ ;

______________________________________ ;

______________________________________ ;

______________________________________ ;

// constructor: create a rectangle with left=l, right=r, top=t, bottom=b

_________________________ (__________ , __________ , __________ , ___________) {

____________ = ___________________ ;

____________ = ___________________ ;

____________ = ___________________ ;

____________ = ___________________ ;

}

// paint with color c. Hint: look at World.paint for parameter order

_______________________ paint (_____________________ , _____________________) {

g.setColor (_____________) ;

g.fillRect (________ , ________ , ______________ , _______________);

}

// return a new Rect equal to the overlap (a rectangle) with other Rect r

_____________________ overlap(___________________) {

// compute x and y boundaries of overlap

______ xl = __ ; // left

______ xr = __ ; // right

______ yt = __ ; // top

______ yb = __ ; // bottom

// return overlap, which may be empty or non-empty

___ ;

}
} // class Rect

CS100 Prelim 3 Initial or Name: Page 7
3b) [19 points] Reminder: Read all comments and code carefully and be sure your code is consistent with them.Some
comments indicate instructions and variables to use. Hint: When drawing overlaps, do not overlap a Rect with itself, and do
not repeat pairs or triples. For example, paint the overlap for pair (r[3], r[5]) or pair (r[5],r[3]), but not both.

// a window with rectangles
class World extends Frame {

private Rect[] r; // rectangles

// create 300-by-300 world with n randomly placed rectangles
public World(int n) {

setSize(300,300); show();
// instantiate Rects r[i] with random positions and dimensions

r = new Rect[n];
for (int i = 0 ; i < n; i++) {

// random width 0..50, random height 0..50
int width = (int) (Math.random() * 50);
int height = (int) (Math.random() * 50);

// random position of rectangle fitting inside 300-by-300 world

int left = __ ;

int top = __ ;

r[i] = ___ ;

}
} // constructor World

// draw Rects in green, overlaps of 2 Rects in red, overlaps of 3 in black
public void paint(Graphics g) {

// paint each r[i] in Color.green
for (int i = 0 ; i < r.length ; i++)

r[i].paint(g, Color.green);
// paint overlaps of pairs (r[i],r[j]) in Color.red (see Hint above)

for (int i = 0 ; i < r.length ; i++)

for (int j = ___________ ; j < __________________ ; j++)

___ ;

// paint overlaps of triples (r[i],r[j],r[k]) in Color.black (see Hint above)
for (int i = 0 ; i < r.length ; i++)

for (int j = ___________ ; j < __________________ ; j++)

for (int k = ___________ ; k < __________________ ; k++)

__ ;

} // method paint
} // class World

// main class: create a World window
public class Q4 {

public static void main(String[] args) {
World w = new World(10); // 10 rectangles

}
} // class Q4

CS100 Prelim 3 Initial or Name: Page 8
Checklist: Congratulations! You reached the last page of Prelim 3. Make sure your name, ID, and section are CLEARLY
indicated. Also, re-read all problem descriptions/code comments/instructions. If you reached this part before exhausting the
allotted time, check your test! Have you done the following?
• Completed all tasks
• Filled in ALL required blanks
• Given comments when necessary
• Declared all variables
• Maintained case-sensitivity
• Handled “special cases” correctly
• Used correct array bounds
• Returned correct values
• Indicated which solution to grade if you wrote multiple attempts

Bonus: [2 bonus points]

Are you attending lecture? Professor Schwartz announced the numerical answers to the following “questions.” You may
answer both since you might actually attend both lectures.

[1 point] The number for 9:05AM is ____________ .

[1 point] The number for 11:15 AM is ____________ .

This space is intentionally left blank.

	CS100 April 18, 2000
	Prelim 3 7:30 PM – 9:10 PM
	Problem 1 [28 points] 2-D arrays
	Problem 2 [25 points] Strings, Characters, Encryption keys
	Problem 3 [47 points] OOP!

